**Finger Ratio Predicts Maths Ability?**

Some of the studies on the 2D: 4D finger ratios (as measured in the picture above) are interesting when considering what factors possibly affect mathematical ability. A 2007 study by Mark Brosnan from the University of Bath found that:

*“Boys with the longest ring fingers relative to their index fingers tend to excel in math. The boys with the lowest ratios also were the ones whose abilities were most skewed in the direction of math rather than literacy.*

*With the girls, there was no correlation between finger ratio and numeracy, but those with higher ratios–presumably indicating low testosterone levels–had better scores on verbal abilities. The link, according to the researchers, is that testosterone levels in the womb influence both finger length and brain development.*

*In men, the ring (fourth) finger is usually longer than the index (second); their so-called 2D:4D ratio is lower than 1. In females, the two fingers are more likely to be the same length. Because of this sex difference, some scientists believe that a low ratio could be a marker for higher prenatal testosterone levels, although it’s not clear how the hormone might influence finger development.”*

In the study, Brosnan photocopied the hands of 74 boys and girls aged 6 and 7. He worked out the 2D:4D finger ratio by dividing the length of the index finger (2D) with the length of the ring finger (4D). They then compared the finger ratios with standardised UK maths and English tests. The differences found were small, but significant.

Another study of 136 men and 137 women, looked at the link between finger ratio and aggression. The results are plotted in the graph above – which clearly show this data follows a normal distribution. The men are represented with the blue line, the women the green line and the overall cohort in red. You can see that the male distribution is shifted to the left as they have a lower mean ratio. (Males: mean 0.947, standard deviation 0.029, Females: mean 0.965, standard deviation 0.026).

The 95% confidence interval for average length is 0.889-1.005 for males and 0.913-1.017 for females. That means that 95% of the male and female populations will fall into these categories.

The correlation between digit ratio and everything from personality, sexuality, sporting ability and management has been studied. If a low 2D:4D ratio is indeed due to testosterone exposure in the womb (which is not confirmed), then that raises the question as to why testosterone exposure should affect mathematical ability. And if it is not connected to testosterone, then what is responsible for the correlation between digit ratios and mathematical talent?

I think this would make a really interesting Internal Assessment investigation at either Studies or Standard Level. Also it works well as a class investigation at KS3 and IGCSE into correlation and scatter diagrams. Does the relationship still hold for when you look at algebraic skills rather than numeracy? Or is algebraic talent distinct from numeracy talent?

A detailed academic discussion of the scientific literature on this topic is available here.

If you enjoyed this post you might also like:

Simulations -Traffic Jams and Asteroid Impacts

NASA, Aliens and Binary Codes from the Stars

Essential resources for IB students:

Revision Village has been put together to help IB students with topic revision both for during the course and for the end of Year 12 school exams and Year 13 final exams. I would strongly recommend students use this as a resource during the course (not just for final revision in Y13!) There are specific resources for HL and SL students for both Analysis and Applications.

There is a comprehensive Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and then provides a large bank of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial. Really useful!

The Practice Exams section takes you to a large number of ready made quizzes, exams and predicted papers. These all have worked solutions and allow you to focus on specific topics or start general revision. This also has some excellent challenging questions for those students aiming for 6s and 7s.

Each course also has a dedicated video tutorial section which provides 5-15 minute tutorial videos on every single syllabus part – handily sorted into topic categories.

2) Exploration Guides and Paper 3 Resources

I’ve put together four comprehensive pdf guides to help students prepare for their exploration coursework and Paper 3 investigations. The exploration guides talk through the marking criteria, common student mistakes, excellent ideas for explorations, technology advice, modeling methods and a variety of statistical techniques with detailed explanations. I’ve also made 17 full investigation questions which are also excellent starting points for explorations. The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.