**Volume optimization of a cuboid**

This is an extension of the Nrich task which is currently live – where students have to find the maximum volume of a cuboid formed by cutting squares of size x from each corner of a 20 x 20 piece of paper. I’m going to use an n x 10 rectangle and see what the optimum x value is when n tends to infinity.

First we can find the volume of the cuboid:

Next we want to find when the volume is a maximum, so differentiate and set this equal to 0.

Next we use the quadratic formula to find the roots of the quadratic, and then see what happens as n tends to infinity (i.e we want to see what the optimum x values are for our cuboid when n approaches infinity). We only take the negative solution of the + – quadratic solutions because this will be the only one that fits the initial problem.

Next we try and simplify the square root by taking out a factor of 16, and then we complete the square for the term inside the square root (this will be useful next!)

Next we make a u substitution. Note that this means that as n approaches infinity, u approaches 0.

Substituting this into the expression gives us:

We then manipulate the surd further to get it in the following form:

Now, the reason for all that manipulation becomes apparent – we can use the binomial expansion for the square root of 1 + u^{2} to get the following:

Therefore we have shown that as the value of n approaches infinity, the value of x that gives the optimum volume approaches 2.5cm.

So, even though we start with a pretty simple optimization task, it quickly develops into some quite complicated mathematics. We could obviously have plotted the term in n to see what its behavior was as n approaches infinity, but it’s nicer to prove it. So, let’s check our result graphically.

As we can see from the graph, with n plotted on the x axis and x plotted on the y axis we approach x = 2.5 as n approaches infinity – as required.

**An m by n rectangle.**

So, we can then extend this by considering an n by m rectangle, where m is fixed and then n tends to infinity. As before the question is what is the value of x which gives the maximum volume as n tends to infinity?

We do the same method. First we write the equation for the volume and put it into the quadratic formula.

Next we complete the square, and make the u substitution:

Next we simplify the surd, and then use the expansion for the square root of 1 + u^{2}

This then gives the following answer:

So, we can see that for an n by m rectangle, as m is fixed and n tends to infinity, the value of x which gives the optimum volume tends to m/4. For example when we had a 10 by n rectangle (i.e m = 10) we had x = 2.5. When we have a 20 by n rectangle we would have x = 5 etc.

And we’ve finished! See what other things you can explore with this problem.

**IB Revision**

If you’re already thinking about your coursework then it’s probably also time to start planning some revision, either for the end of Year 12 school exams or Year 13 final exams. There’s a really great website that I would strongly recommend students use – you choose your subject (HL/SL/Studies if your exam is in 2020 or Applications/Analysis if your exam is in 2021), and then have the following resources:

The Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and each area then has a number of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial. Really useful!

The Practice Exams section takes you to ready made exams on each topic – again with worked solutions. This also has some harder exams for those students aiming for 6s and 7s and the Past IB Exams section takes you to full video worked solutions to every question on every past paper – and you can also get a prediction exam for the upcoming year.

I would really recommend everyone making use of this – there is a mixture of a lot of free content as well as premium content so have a look and see what you think.

## Leave a comment

Comments feed for this article