You are currently browsing the category archive for the ‘modelling’ category.

traffic simulation

Simulations -Traffic Jams and Asteroid Impacts

This is a really good online Java app which has been designed by a German mathematician to study the mathematics behind traffic flow.  Why do traffic jams form?  How does the speed limit or traffic lights or the number of lorries on the road affect road conditions?   You can run a number of different simulations – looking at ring road traffic, lane closures and how robust the system is by applying an unexpected perturbation (like an erratic driver).

There is a lot of scope for investigation – with some prompts on the site.  For example, just looking at one variable – the speed limit – what happens in the lane closure model?  Interestingly, with a homogenous speed of 80 km/h there is no traffic congestion – but if the speed is increased to 140km/h then large congestion builds up quickly as cars are unable to change lanes.   This is why reduced speed limits  are applied on motorways during lane closures.

Another investigation is looking at how the style of driving affects the models.  You can change the politeness of the drivers – do they change lanes recklessly?  How many perturbations (erratic incidents) do you need to add to the simulation to cause a traffic jam?

This is a really good example of mathematics used in a real life context – and also provides some good opportunities for a computer based investigation looking at the altering one parameter at a time to note the consequences.

asteriod

Another good simulation is on the Impact: Earth page.  This allows you to investigate the consequences of various asteroid impacts on Earth – choosing from different parameters such as diameter, velocity, density and angle of impact.  It then shows a detailed breakdown of thee consequences – such as crater size and energy released.   You can also model some famous impacts from history and see their effects.   Lots of scope for mathematical modelling – and also for links with physics.  Also possible discussion re the logarithmic Richter scale – why is this useful?

Student Handout

Asteroid Impact – Why is this important?
Comets and asteroids impact with Earth all the time – but most are so small that we don’t even notice. On a cosmic scale however, the Earth has seen some massive impacts – which were they to happen again today could wipe out civilisation as we know it.

The website Impact Earth allows us to model what would happen if a comet or asteroid hit us again. Jay Melosh professor of Physics and Earth Science says that we can expect “fairly large” impact events about every century. The last major one was in Tunguska Siberia in 1908 – which flattened an estimated 80 million trees over an area of 2000 square km. The force unleashed has been compared to around 1000 Hiroshima nuclear bombs. Luckily this impact was in one of the remotest places on Earth – had the impact been near a large city the effects could be catastrophic.

Jay says that, ”The biggest threat in our near future is the asteroid Apophis, which has a small chance of striking the Earth in 2036. It is about one-third of a mile in diameter.”

Task 1: Watch the above video on a large asteroid impact – make some notes.

Task 2:Research about Apophis – including the dimensions and likely speed of the asteroid and probability of collision. Use this data to enter into the Impact Earth simulation and predict the damage that this asteroid could do.

Task 3: Investigate the Tunguska Event. When did it happen? What was its diameter? Likely speed? Use the data to model this collision on the Impact Earth Simulation. Additional: What are the possible theories about Tunguska? Was it a comet? Asteroid? Death Ray?

Task 4: Conduct your own investigation on the Impact Earth Website into what factors affect the size of craters left by impacts. To do this you need to change one variable and keep all the the other variables constant.  The most interesting one to explore is the angle of impact.  Keep everything else the same and see what happens to the crater size as the angle changes from 10 degrees to 90 degrees.  What angle would you expect to cause the most damage?  Were you correct?  Plot the results as a graph.

If you enjoyed this post you might also like:

Champagne Supernovas and the Birth of the Universe – some amazing photos from space.

Fractals, Mandelbrot and the Koch Snowflake – using maths to model infinite patterns.

screen-shot-2017-01-28-at-7-46-54-am

Maths of Global Warming – Modeling Climate Change

The above graph is from NASA’s climate change site, and was compiled from analysis of ice core data. Scientists from the National Oceanic and Atmospheric Administration (NOAA) drilled into thick polar ice and then looked at the carbon content of air trapped in small bubbles in the ice. From this we can see that over large timescales we have had large oscillations in the concentration of carbon dioxide in the atmosphere. During the ice ages we have had around 200 parts per million carbon dioxide, rising to around 280 in the inter-glacial periods. However this periodic oscillation has been broken post 1950 – leading to a completely different graph behaviour, and putting us on target for 400 parts per million in the very near future.

Analysising the data

screen-shot-2017-01-28-at-7-40-53-am

One of the fields that mathematicians are always in demand for is data analysis. Understanding data, modeling with the data collected and using that data to predict future events. Let’s have a quick look at some very simple modeling. The graph above shows a superimposed sine graph plotted using Desmos onto the NOAA data.

y = -0.8sin(3x +0.1) – 1

Whilst not a perfect fit, it does capture the general trend of the data and its oscillatory behaviour until 1950. We can see that post 1950 we would then expect to be seeing a decline in carbon dioxide rather than the reverse – which on our large timescale graph looks close to vertical.

Dampened Sine wave

screen-shot-2017-01-28-at-8-33-06-am

This is a dampened sine wave, achieved by adding e-x to the front of the sine term.  This achieves the result of progressively reducing the amplitude of the sine function.  The above graph is:

y = e-0.06x (-0.6sin(3x+0.1) -1 )

This captures the shape in the middle of the graph better than the original sine function, but at the expense of less accuracy at the left and right.

Polynomial Regression

screen-shot-2017-01-29-at-7-07-21-am

We can make use of Desmos’ regression tools to fit curves to points.  Here I have entered a table of values and then seen which polynomial gives the best fit:

screen-shot-2017-01-29-at-7-10-35-am

screen-shot-2017-01-29-at-7-10-20-am

We can see that the purple cubic fits the first 5 points quite well (with a high R² value).  So we should be able to create a piecewise function to describe this graph.

Piecewise Function

screen-shot-2017-01-29-at-7-18-17-am

Here I have restricted the domain of the first polynomial (entered below):

screen-shot-2017-01-29-at-7-34-21-am

Second polynomial:

screen-shot-2017-01-29-at-7-34-54-am

screen-shot-2017-01-29-at-7-34-36-am

Third polynomial:

screen-shot-2017-01-29-at-8-00-19-am

screen-shot-2017-01-29-at-7-59-29-am

Fourth polynomial:

screen-shot-2017-01-29-at-8-00-35-am

screen-shot-2017-01-29-at-8-02-43-am

Finished model:

screen-shot-2017-01-29-at-8-03-48-am

Shape of model:

screen-shot-2017-01-29-at-8-06-38-am

We would then be able to fit this to the original model scale by applying a vertical translation (i.e add 280), vertical and horizontal stretch.  It would probably have been easier to align the scales at the beginning!  Nevertheless we have the shape we wanted.

Analysing the models

Our piecewise function gives us a good data fit for the domain we were working in – so if we then wanted to use some calculus to look at non horizontal inflections (say), this would be a good model to use.  If we want to analyse what we would have expected to happen without human activity, then the sine models at the very start are more useful in capturing the trend of the oscillations.

Post 1950s

screen-shot-2017-01-28-at-8-07-47-am

Looking on a completely different scale, we can see the general tend of carbon dioxide concentration post 1950 is pretty linear.  This time I’ll scale the axis at the start.  Here 1960 corresponds with x = 0, and 1970 corresponds with x = 5 etc.

screen-shot-2017-01-29-at-8-53-08-am

screen-shot-2017-01-29-at-9-15-20-am

Actually we can see that a quadratic fits the curve better than a linear graph – which is bad news, implying that the rates of change of carbon in the atmosphere will increase.  Using our model we can predict that on current trends in 2030 there will be 500 parts per million of carbon in the atmosphere.

Stern Report

According to the Stern Report, 500ppm is around the upper limit of what we need to aim to stabalise the carbon levels at (450ppm-550ppm of carbon equivalent) before the economic and social costs of climate change become economically catastrophic.  The Stern Report estimates that it will cost around 1% of global GDP to stablise in this range.  Failure to do that is predicted to lock in massive temperature rises of between 3 and 10 degrees by the end of the century.

If you are interested in doing an investigation on this topic:

  1. Plus Maths have a range of articles on the maths behind climate change
  2. The Stern report is a very detailed look at the evidence, graphical data and economic costs.

Website Stats

  • 3,712,902 views

Recent Posts

Follow IB Maths Resources from British International School Phuket on WordPress.com