You are currently browsing the tag archive for the ‘optimisation’ tag.

**Volume optimization of a cuboid**

This is an extension of the Nrich task which is currently live – where students have to find the maximum volume of a cuboid formed by cutting squares of size x from each corner of a 20 x 20 piece of paper. I’m going to use an n x 10 rectangle and see what the optimum x value is when n tends to infinity.

First we can find the volume of the cuboid:

Next we want to find when the volume is a maximum, so differentiate and set this equal to 0.

Next we use the quadratic formula to find the roots of the quadratic, and then see what happens as n tends to infinity (i.e we want to see what the optimum x values are for our cuboid when n approaches infinity). We only take the negative solution of the + – quadratic solutions because this will be the only one that fits the initial problem.

Next we try and simplify the square root by taking out a factor of 16, and then we complete the square for the term inside the square root (this will be useful next!)

Next we make a u substitution. Note that this means that as n approaches infinity, u approaches 0.

Substituting this into the expression gives us:

We then manipulate the surd further to get it in the following form:

Now, the reason for all that manipulation becomes apparent – we can use the binomial expansion for the square root of 1 + u^{2} to get the following:

Therefore we have shown that as the value of n approaches infinity, the value of x that gives the optimum volume approaches 2.5cm.

So, even though we start with a pretty simple optimization task, it quickly develops into some quite complicated mathematics. We could obviously have plotted the term in n to see what its behavior was as n approaches infinity, but it’s nicer to prove it. So, let’s check our result graphically.

As we can see from the graph, with n plotted on the x axis and x plotted on the y axis we approach x = 2.5 as n approaches infinity – as required.

**An m by n rectangle.**

So, we can then extend this by considering an n by m rectangle, where m is fixed and then n tends to infinity. As before the question is what is the value of x which gives the maximum volume as n tends to infinity?

We do the same method. First we write the equation for the volume and put it into the quadratic formula.

Next we complete the square, and make the u substitution:

Next we simplify the surd, and then use the expansion for the square root of 1 + u^{2}

This then gives the following answer:

So, we can see that for an n by m rectangle, as m is fixed and n tends to infinity, the value of x which gives the optimum volume tends to m/4. For example when we had a 10 by n rectangle (i.e m = 10) we had x = 2.5. When we have a 20 by n rectangle we would have x = 5 etc.

And we’ve finished! See what other things you can explore with this problem.

**IB Revision**

If you’re already thinking about your coursework then it’s probably also time to start planning some revision, either for the end of Year 12 school exams or Year 13 final exams. There’s a really great website that I would strongly recommend students use – you choose your subject (HL/SL/Studies if your exam is in 2020 or Applications/Analysis if your exam is in 2021), and then have the following resources:

The Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and each area then has a number of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial. Really useful!

The Practice Exams section takes you to ready made exams on each topic – again with worked solutions. This also has some harder exams for those students aiming for 6s and 7s and the Past IB Exams section takes you to full video worked solutions to every question on every past paper – and you can also get a prediction exam for the upcoming year.

I would really recommend everyone making use of this – there is a mixture of a lot of free content as well as premium content so have a look and see what you think.

This is an example of how an investigation into area optimisation could progress. The problem is this:

A farmer has 40m of fencing. What is the maximum area he can enclose?

**Case 1: The rectangle:**

Reflection – the rectangle turns out to be a square, with sides 10m by 10m. Therefore the area enclosed is 100 metres squared.

**Case 2: The circle:**

Reflection: The area enclosed is greater than that of the square – this time we have around 127 metres squared enclosed.

**Case 3: The isosceles triangle:**

Reflection – our isosceles triangle turns out to be an equilateral triangle, and it only encloses an area of around 77 metres squared.

**Case 4, the n sided regular polygon**

Reflection: Given that we found the cases for a 3 sided and 4 sided shape gave us the regular shapes, it made sense to look for the n-sided regular polygon case. If we try to plot the graph of the area against n we can see that for n ≥3 the graph has no maximum but gets gets closer to an asymptote. By looking at the limit of this area (using Wolfram Alpha) as n gets large we can see that the limiting case is the circle. This makes sense as regular polygons become closer to circles the more sides they have.

**Proof of the limit using L’Hospital’s Rule**

Here we can prove that the limit is indeed 400/pi by using L’Hospital’s rule. We have to use it twice and also use a trig identity for sin(2x) – but pleasingly it agrees with Wolfram Alpha.

So, a simple example of how an investigation can develop – from a simple case, getting progressively more complex and finishing with some HL Calculus Option mathematics.

**IB Revision**

If you’re already thinking about your coursework then it’s probably also time to start planning some revision, either for the end of Year 12 school exams or Year 13 final exams. There’s a really great website that I would strongly recommend students use – you choose your subject (HL/SL/Studies if your exam is in 2020 or Applications/Analysis if your exam is in 2021), and then have the following resources:

The Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and each area then has a number of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial. Really useful!

The Practice Exams section takes you to ready made exams on each topic – again with worked solutions. This also has some harder exams for those students aiming for 6s and 7s and the Past IB Exams section takes you to full video worked solutions to every question on every past paper – and you can also get a prediction exam for the upcoming year.

I would really recommend everyone making use of this – there is a mixture of a lot of free content as well as premium content so have a look and see what you think.

This is a nice example of using some maths to solve a puzzle from the mindyourdecisions youtube channel (screencaptures from the video).

**How to Avoid The Troll: A Puzzle**

In these situations it’s best to look at the extreme case first so you get some idea of the problem. If you are feeling particularly pessimistic you could assume that the troll is always going to be there. Therefore you would head to the top of the barrier each time. This situation is represented below:

**The Pessimistic Solution:**

Another basic strategy would be the optimistic strategy. Basically head in a straight line hoping that the troll is not there. If it’s not, then the journey is only 2km. If it is then you have to make a lengthy detour. This situation is shown below:

**The Optimistic Solution:**

The expected value was worked out here by doing 0.5 x (2) + 0.5 x (2 + root 2) = 2.71.

The question is now, is there a better strategy than either of these? An obvious possibility is heading for the point halfway along where the barrier might be. This would make a triangle of base 1 and height 1/2. This has a hypotenuse of root (5/4). In the best case scenario we would then have a total distance of 2 x root (5/4). In the worst case scenario we would have a total distance of root(5/4) + 1/2 + root 2. We find the expected value by multiply both by 0.5 and adding. This gives 2.63 (2 dp). But can we do any better? Yes – by using some algebra and then optimising to find a minimum.

**The Optimisation Solution:**

To minimise this function, we need to differentiate and find when the gradient is equal to zero, or draw a graph and look for the minimum. Now, hopefully you can remember how to differentiate polynomials, so here I’ve used Wolfram Alpha to solve it for us. Wolfram Alpha is incredibly powerful -and also very easy to use. Here is what I entered:

and here is the output:

So, when we head for a point exactly 1/(2 root 2) up the potential barrier, we minimise the distance travelled to around 2.62 miles.

So, there we go, we have saved 0.21 miles from our most pessimistic model, and 0.01 miles from our best guess model of heading for the midpoint. Not a huge difference – but nevertheless we’ll save ourselves a few seconds!

This is a good example of how an exploration could progress – once you get to the end you could then look at changing the question slightly, perhaps the troll is only 1/3 of the distance across? Maybe the troll appears only 1/3 of the time? Could you even generalise the results for when the troll is y distance away or appears z percent of the time?