If you are a teacher then please also visit my new site: intermathematics.com for over 2000+ pdf pages of resources for teaching IB maths!

**Modeling hours of daylight**

Desmos has a nice student activity (on teacher.desmos.com) modeling the number of hours of daylight in Florida versus Alaska – which both produce a nice sine curve when plotted on a graph. So let’s see if this relationship also holds between Phuket and Manchester.

First we can find the daylight hours from this site, making sure to convert the times given to decimals of hours.

**Phuket**

Phuket has the following distribution of hours of daylight (taking the reading from the first of each month and setting 1 as January)

**Manchester **

Manchester has much greater variation and is as follows:

Therefore when we plot them together (Phuket in green and Manchester in blue) we get the following 2 curves:

We can see that these very closely fit sine curves, indeed we can see that the following regression lines fit the curves very closely:

**Manchester:**

**Phuket:**

For Manchester I needed to set the value of b (see what happens if you don’t do this!) Because we are working with Sine graphs, the value of d will give the equation of the axis of symmetry of the graph, which will also be the average hours of daylight over the year. We can see therefore that even though there is a huge variation between the hours of daylight in the 2 places, they both get on average the same amount of daylight across the year (12.3 hours versus 12.1 hours).

**Further investigation:**

Does the relationship still hold when looking at hours of sunshine rather than daylight? How many years would we expect our model be accurate for? It’s possible to investigate the use of sine waves to model a large amount of natural phenomena such as tide heights and musical notes – so it’s also possible to investigate in this direction as well.

**Essential Resources for IB Teachers**

If you are a **teacher** then please also visit my new site. This has been designed specifically for teachers of mathematics at international schools. The content now includes over **2000 pages of pdf content** for the entire SL and HL Analysis syllabus and also the SL Applications syllabus. Some of the content includes:

**Original pdf worksheets**(with full worked solutions) designed to cover all the syllabus topics. These make great homework sheets or in class worksheets – and are each designed to last between 40 minutes and 1 hour.**Original Paper 3 investigations**(with full worked solutions) to develop investigative techniques and support both the exploration and the Paper 3 examination.- Over 150 pages of
**Coursework Guides**to introduce students to the essentials behind getting an excellent mark on their exploration coursework. - A large number of
**enrichment activities**such as treasure hunts, quizzes, investigations, Desmos explorations, Python coding and more – to engage IB learners in the course.

There is also a lot more. I think this could save teachers 200+ hours of preparation time in delivering an IB maths course – so it should be well worth exploring!

**Essential Resources for both IB teachers and IB students**

1) Exploration Guides and Paper 3 Resources

I’ve put together a **168 page** Super Exploration Guide to talk students and teachers through all aspects of producing an excellent coursework submission. Students always make the same mistakes when doing their coursework – get the inside track from an IB moderator! I have also made **Paper 3 packs** for HL Analysis and also Applications students to help prepare for their Paper 3 exams. The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

## Leave a comment

Comments feed for this article