You are currently browsing the category archive for the ‘IB HL trigonometry’ category.

**The Tusi couple – A circle rolling inside a circle**

Numberphile have done a nice video where they discuss some beautiful examples of trigonometry and circular motion and where they present the result shown above: a circle rolling within a circle, with the individual points on the small circle showing linear motion along the diameters of the large circle. So let’s see what maths we need to create the image above.

** Projection of points**

We can start with the equation of a unit circle centred at the origin:

and we can then define a point on this circle parametrically by the coordinate:

Here *t* is the angle measured from the horizontal.

If we then want to see the projection of this point along the y-axis we can also plot:

and to see the projection of this point along the x-axis we can also plot:

By then varying *t* from 0 to 2 pi gives the animation above – where the black dot on the circle moves around the circle and there is a projection of its x and y coordinates on the axes.

**Projection along angled lines**

I can then add a line through the origin at angle *a* to the horizontal:

and this time I can project so that the line joining up the black point on the edge of the large circle intersects the dotted line in a right angle.

In order to find the parametric coordinate of this point projection I can use some right angled triangles as follows:

The angle from the horizontal to my point A is *t*. The angle from the horizontal to the slanted line is *a*. The length of my radius BA is 1. This gives me the length of BC.

But I have the identity:

Therefore this gives:

And using some more basic trigonometry gives the following diagram:

Therefore the parametric form of the projection of the point can be given as:

**Adding more lines**

I can add several more slanted lines through the origin. You can see that each dot on the line is the right angle projection between the line and the point on the circle. As we do this we can notice that the points on the lines look as though they form a circle. By noticing that the new smaller circle is half the size of the larger circle, and that the centre of the smaller circle is half-way between the origin and the point on the large circle, we get:

We can the vary the position of the point on the large circle to then create our final image:

We have a connection between both linear motion and circular motion and create the impression of a circle rolling inside another.

You can play around with this demos graph here. All you need to do is either drag the black point around the circle, or press play for the *t* slider.

**More ideas on projective geometry:**

Ferenc Beleznay has made this nice geogebra file here which shows a different way of drawing a connection between a moving point on a large circle and a circle half the size. Here we connect the red dot with the origin and draw the perpendicular from this line to the other edge of the small circle. The point of intersection of the two lines is always on the small circle.

**Further exploration **

There is a lot more you can explore – start by looking into the Tusi Couple – which is what we have just drawn – and the more general case the hypocycloid.

**Modeling hours of daylight**

Desmos has a nice student activity (on teacher.desmos.com) modeling the number of hours of daylight in Florida versus Alaska – which both produce a nice sine curve when plotted on a graph. So let’s see if this relationship also holds between Phuket and Manchester.

First we can find the daylight hours from this site, making sure to convert the times given to decimals of hours.

**Phuket**

Phuket has the following distribution of hours of daylight (taking the reading from the first of each month and setting 1 as January)

**Manchester **

Manchester has much greater variation and is as follows:

Therefore when we plot them together (Phuket in green and Manchester in blue) we get the following 2 curves:

We can see that these very closely fit sine curves, indeed we can see that the following regression lines fit the curves very closely:

**Manchester:**

**Phuket:**

For Manchester I needed to set the value of b (see what happens if you don’t do this!) Because we are working with Sine graphs, the value of d will give the equation of the axis of symmetry of the graph, which will also be the average hours of daylight over the year. We can see therefore that even though there is a huge variation between the hours of daylight in the 2 places, they both get on average the same amount of daylight across the year (12.3 hours versus 12.1 hours).

**Further investigation:**

Does the relationship still hold when looking at hours of sunshine rather than daylight? How many years would we expect our model be accurate for? It’s possible to investigate the use of sine waves to model a large amount of natural phenomena such as tide heights and musical notes – so it’s also possible to investigate in this direction as well.

**IB Revision**

If you’re already thinking about your coursework then it’s probably also time to start planning some revision, either for the end of Year 12 school exams or Year 13 final exams. There’s a really great website that I would strongly recommend students use – you choose your subject (HL/SL/Studies if your exam is in 2020 or Applications/Analysis if your exam is in 2021), and then have the following resources:

The Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and each area then has a number of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial. Really useful!

The Practice Exams section takes you to ready made exams on each topic – again with worked solutions. This also has some harder exams for those students aiming for 6s and 7s and the Past IB Exams section takes you to full video worked solutions to every question on every past paper – and you can also get a prediction exam for the upcoming year.

I would really recommend everyone making use of this – there is a mixture of a lot of free content as well as premium content so have a look and see what you think.

**Modelling tides: What is the effect of a full moon?**

Let’s have a look at the effect of the moon on the tides in Phuket. The Phuket tide table above shows the height of the tide (meters) on given days in March, with the hours along the top. So if we choose March 1st (full moon) we get the following graph:

**Phuket tide at full moon:**

If I use the standard sine regression on Desmos I get the following:

This doesn’t look a very useful graph – but the R squared value is very close to one – so what’s gone wrong? Well, Desmos has done what we asked it to do – found a sine curve that goes through the points, it’s just that it’s chosen a b value of close to 120 – meaning that the curve has a very small period. So to prevent Desmos doing this, we need to fix the period first. If we are in radians the we use the formula period = 2pi / b. Therefore looking at the original graph we can see that this period is around 12. Therefore we have:

period = 2pi/b

12 = 2pi/b

b = 2pi/12 or pi/6.

Plotting this new graph gives something that looks a lot nicer:

**Phuket tide at new moon:**

**Analysis:**

Both graphs show a very close fit to the original data – though both under-value the tide at 2300. We can see that the full moon has indeed had an effect on the amplitude of the sine curves – with the amplitude of 1.21m for the full moon and only 1.03m for the new moon.

**Further study:**

We could then see if this relationship holds throughout the year – is there a general formula to explain the moons effect on the amplitude? We could also see how we have to modify the sine wave to capture the tidal height over an entire week or month. Can we capture it with a single equation (perhaps a damped sine wave?) or is it only possible as a piecewise function? We could also use some calculus to find the maximum and minimum points.

There is a very nice pdf which goes into more detail on the maths behind modeling tides here. There we go – a nice simple investigation which can be expanded in a number of directions.

**IB Revision**

If you’re already thinking about your coursework then it’s probably also time to start planning some revision, either for the end of Year 12 school exams or Year 13 final exams. There’s a really great website that I would strongly recommend students use – you choose your subject (HL/SL/Studies if your exam is in 2020 or Applications/Analysis if your exam is in 2021), and then have the following resources:

The Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and each area then has a number of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial. Really useful!

The Practice Exams section takes you to ready made exams on each topic – again with worked solutions. This also has some harder exams for those students aiming for 6s and 7s and the Past IB Exams section takes you to full video worked solutions to every question on every past paper – and you can also get a prediction exam for the upcoming year.

I would really recommend everyone making use of this – there is a mixture of a lot of free content as well as premium content so have a look and see what you think.

**Circular Motion: Modelling a ferris wheel**

This is a nice simple example of how the Tracker software can be used to demonstrate the circular motion of a Ferris wheel. This is sometimes asked in IB maths exams – so it’s nice to get a visual representation of what is happening.

First I took a video from youtube of a Ferris wheel, loaded it into Tracker, and then used the program to track the position of a single carriage as it moved around the circle. I then used Tracker’s graphing capabilities to plot the height of the carriage (y) against time (t). This produces the following graph:

As we can see this is a pretty good fit for a sine curve. So let’s use the regression tool to find what curve fits this:

The pink curve with the equation:

y = -116.1sin(0.6718t+2.19)

fits reasonably well. If we had the original dimensions of the wheel we could scale this so the y scale represented the metres off the ground of the carriage.

There we go! Short and simple, but a nice starting point for an investigation on circular motion.

**IB Revision**

If you’re already thinking about your coursework then it’s probably also time to start planning some revision, either for the end of Year 12 school exams or Year 13 final exams. There’s a really great website that I would strongly recommend students use – you choose your subject (HL/SL/Studies if your exam is in 2020 or Applications/Analysis if your exam is in 2021), and then have the following resources:

The Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and each area then has a number of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial. Really useful!

The Practice Exams section takes you to ready made exams on each topic – again with worked solutions. This also has some harder exams for those students aiming for 6s and 7s and the Past IB Exams section takes you to full video worked solutions to every question on every past paper – and you can also get a prediction exam for the upcoming year.

I would really recommend everyone making use of this – there is a mixture of a lot of free content as well as premium content so have a look and see what you think.