Screen Shot 2017-12-02 at 9.17.02 PM

The Remarkable Dirac Delta Function

This is a brief introduction to the Dirac Delta function – named after the legendary Nobel prize winning physicist Paul Dirac. Dirac was one of the founding fathers of the mathematics of quantum mechanics, and is widely regarded as one of the most influential physicists of the 20th Century.  This topic is only recommended for students confident with the idea of limits and was inspired by a Quora post by Arsh Khan.

Dirac defined the delta function as having the following 2 properties:

Screen Shot 2017-12-02 at 9.22.27 PMThe first property as defined above is that the delta function is 0 for all values of t, except for t = 0, when it is infinite.

Screen Shot 2017-12-02 at 9.22.36 PM

The second property defined above is that the integral of the delta function – and the area of the graph between 2 points (either side of 0) is 1.    We can take the bottom integral where we integrate from negative to positive infinity as this will be more useful later.

The delta function (technically not a function in a normal sense!) can be represented as the following limit:

Screen Shot 2017-12-02 at 9.36.47 PM

Whilst this looks a little intimidating, it just means that we take the limit of the function as epsilon (ε) approaches 0.  Given this definition of the delta function we can check that the 2 properties outlined above hold.

Screen Shot 2017-12-02 at 9.36.53 PM

For the first limit above we set t not equal to 0.  Then, because it is a continuous function when t is not equal to 0, we can effectively replace epsilon with 0 in the first limit above to get a limit of 0.  In the second limit when t = 0 we get a limit of infinity.  Therefore the first property holds.

To show that the second property holds, we start with the following integral identity from HL Calculus:

Screen Shot 2017-12-02 at 9.47.52 PM

Hopefully this will look similar to the function we are interested in.  Let’s play a little fast and loose with the mathematics and ignore the limit of the function and just consider the following integral:

Screen Shot 2017-12-02 at 9.44.25 PM

Therefore (using the fact that the graph of arctanx has horizontal asymptotes at positive and negative pi/2 for the final part) :

Screen Shot 2017-12-02 at 9.44.37 PM

Screen Shot 2017-12-02 at 9.44.48 PM

So we have shown above that the integral of every function of this form will have an integral of 1, regardless of the value of epsilon, thus satisfying our second property.

The use of the Dirac Function

So far so good.  But what is so remarkable about the Dirac function?  Well, it allows objects to be described in terms of a single zero width (and infinitely high) spike, but despite having zero width, this spike still has an area of 1.   This then allows the representation of elementary particles which have zero size but finite mass (and other finite properties such as charge) to be represented mathematically.  With the area under the curve = 1 it can also be thought of in terms of a probability density function – i.e representing the quantum world in terms of probability wave functions.

A graphical representation:

This is easier to understand graphically.  Say for example we choose a value epsilon (ε) and gradually make it smaller (i.e we find the limit as ε approaches 0).  When ε = 5 we have the following:

Screen Shot 2017-12-02 at 10.15.51 PM

Screen Shot 2017-12-02 at 10.18.26 PM

When ε = 1 we have the following:

Screen Shot 2017-12-02 at 10.17.11 PMScreen Shot 2017-12-02 at 10.16.41 PM

When ε = 0.1 we have the following:

Screen Shot 2017-12-02 at 10.19.23 PMScreen Shot 2017-12-02 at 10.19.16 PM

When ε = 0.01 we have the following:

Screen Shot 2017-12-02 at 10.20.37 PMScreen Shot 2017-12-02 at 10.20.30 PM

You can see that as  ε approaches 0 we get a function which is close to 0 everywhere except for a spike at zero.  The total area under the function remains at 1 for all ε.

Screen Shot 2017-12-02 at 10.24.24 PM

Therefore we can represent the Dirac Delta function with the above graph.  In it we have a point with zero width but with infinite height – and still with an area under the curve of 1!

Essential resources for IB students:

1) Revision Village

Screen Shot 2021-05-19 at 9.55.51 AM

Revision Village has been put together to help IB students with topic revision both for during the course and for the end of Year 12 school exams and Year 13 final exams.  I would strongly recommend students use this as a resource during the course (not just for final revision in Y13!) There are specific resources for HL and SL students for both Analysis and Applications.

Screen Shot 2018-03-19 at 4.42.05 PM.png

There is a comprehensive Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and then provides a large bank of graded questions.  What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial.  Really useful!

Screen Shot 2021-05-19 at 10.05.18 AM

The Practice Exams section takes you to a large number of ready made quizzes, exams and predicted papers.   These all have worked solutions and allow you to focus on specific topics or start general revision.  This also has some excellent challenging questions for those students aiming for 6s and 7s.

Each course also has a dedicated video tutorial section which provides 5-15 minute tutorial videos on every single syllabus part – handily sorted into topic categories.

2) Exploration Guides and Paper 3 Resources

Screen Shot 2021-05-19 at 6.32.13 PM

I’ve put together four comprehensive pdf guides to help students prepare for their exploration coursework and Paper 3 investigations. The exploration guides talk through the marking criteria, common student mistakes, excellent ideas for explorations, technology advice, modeling methods and a variety of statistical techniques with detailed explanations. I’ve also made 17 full investigation questions which are also excellent starting points for explorations.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.