If you are a teacher then please also visit my new site: intermathematics.com for over 2000+ pdf pages of resources for teaching IB maths!

**Modelling Infectious Diseases**

Using mathematics to model the spread of diseases is an incredibly important part of preparing for potential new outbreaks. As well as providing information to health workers about the levels of vaccination needed to protect a population, it also helps govern first response actions when new diseases potentially emerge on a large scale (for example, Bird flu, SARS and Ebola have all merited much study over the past few years).

The basic model is based on the SIR model – this is represented by the picture above (from Plus Maths which has an excellent and more detailed introduction to this topic). The SIR model looks at how much of the population is susceptible to infection, how many of these go on to become infectious, and how many of these go on to recover (and in what timeframe).

Another important parameter is R_{0}, this is defined as how many people an infectious person will pass on their infection to in a totally susceptible population. Some of the R_{0}values for different diseases are shown above. This shows how an airbourne infection like measles is very infectious – and how malaria is exceptionally hard to eradicate because infected people act almost like a viral storage bank for mosquitoes.

One simple bit of maths can predict what proportion of the population needs to be vaccinated to prevent the spread of viruses. The formula is:

V_{T} = 1 – 1/R_{0}

Where V_{T} is the proportion of the population who require vaccinations. In the case of something like the HIV virus (with an R_{0} value of between 2 and 5), you would only need to vaccinate a maximum of 80% of the population. Measles however requires around 95% vaccinations. This method of protecting the population is called herd immunity

This graphic above shows how herd immunity works. In the first scenario no members of the population are immunised, and that leads to nearly all the population becoming ill – but in the third scenario, enough members of the population are immunised to act as buffers against the spread of the infection to non-immunised people.

The equations above represent the simplest SIR (susceptible, infectious, recovered) model – though it is still somewhat complicated!

dS/dt represents the rate of change of those who are susceptible to the illness with respect to time. dI/dt represents the rate of change of those who are infected with respect to time. dR/dt represents the rate of change of those who have recovered with respect to time.

For example, if dI/dt is high then the number of people becoming infected is rapidly increasing. When dI/dt is zero then there is no change in the numbers of people becoming infected (number of infections remain steady). When dI/dt is negative then the numbers of people becoming infected is decreasing.

The constants β and ν are chosen depending on the type of disease being modelled. β represents the contact rate – which is how likely someone will get the disease when in contact with someone who is ill. ν is the recovery rate which is how quickly people recover (and become immune.

ν can be calculated by the formula:

D = 1/ν

where D is the duration of infection.

β can then be calculated if we know R_{0} by the formula:

R_{0} = β/ν

**Modelling measles**

So, for example, with measles we have an average infection of about a week, (so if we want to work in days, 7 = 1/ν and so ν = 1/7). If we then take R_{0} = 15 then:

R_{0} = β/ν

15 = β/0.14

β = 2.14

Therefore our 3 equations for rates of change become:

dS/dt = -2.14 I S

dI/dt = 2.14 I S – 0.14 I

dR/dt = 0.14 I

Unfortunately these equations are very difficult to solve – but luckily we can use a computer program to plot what happens. We need to assign starting values for S, I and R – the numbers of people susceptible, infectious, recovered (immune) from measles. Let’s say we have a total population of 11 people – 10 who are susceptible, 1 who is infected and 0 who are immune. This gives the following outcome:

This shows that the infection spreads incredibly rapidly – by day 2, 8 people are infected. By day 10 most people are immune but the illness is still in the population, and by day 30 the entire population is immune and the infection has died out.

An illustration of just how rapidly measles can spread is provided by the graphic above. This time we start with a population of 1000 people and only 1 infected individual – but even now, within 5 days over 75% of the population are infected.

This last graph shows the power of herd immunity. This time there are 100 susceptible people, but 900 people are recovered (immune), and there is again one infectious person. This time the infection never takes off in the community – those who are already immune act as a buffer against infection.

If you enjoyed this post you might also like:

Differential Equations in Real Life – some other uses of differential equations in modelling predator-prey relationships between animal populations.

**Essential Resources for IB Teachers**

If you are a **teacher** then please also visit my new site. This has been designed specifically for teachers of mathematics at international schools. The content now includes over **2000 pages of pdf content** for the entire SL and HL Analysis syllabus and also the SL Applications syllabus. Some of the content includes:

**Original pdf worksheets**(with full worked solutions) designed to cover all the syllabus topics. These make great homework sheets or in class worksheets – and are each designed to last between 40 minutes and 1 hour.**Original Paper 3 investigations**(with full worked solutions) to develop investigative techniques and support both the exploration and the Paper 3 examination.- Over 150 pages of
**Coursework Guides**to introduce students to the essentials behind getting an excellent mark on their exploration coursework. - A large number of
**enrichment activities**such as treasure hunts, quizzes, investigations, Desmos explorations, Python coding and more – to engage IB learners in the course.

There is also a lot more. I think this could save teachers 200+ hours of preparation time in delivering an IB maths course – so it should be well worth exploring!

**Essential Resources for both IB teachers and IB students**

1) Exploration Guides and Paper 3 Resources

I’ve put together a **168 page** Super Exploration Guide to talk students and teachers through all aspects of producing an excellent coursework submission. Students always make the same mistakes when doing their coursework – get the inside track from an IB moderator! I have also made **Paper 3 packs** for HL Analysis and also Applications students to help prepare for their Paper 3 exams. The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

## 3 comments

Comments feed for this article

December 25, 2015 at 11:12 pm

Samarth SidhuHow are the deaths caused by measles accounted for by this model?

January 19, 2016 at 11:36 am

JesusHow does one calculate the values of beta and gamma for the SIR model?

May 15, 2018 at 8:16 am

NullI know I’m like 3 years late to this but the deaths would have to be calculated by taking the difference of S(0) and S(end time) to give you the total number of people infected, and then you would multiply by the morbidity rate. The model fails to actually account for death, birth or immigration as it models a closed population, so you more or less need to infer the death total from other data you do have.