Screen Shot 2020-04-08 at 9.56.08 AM

If you are a teacher then please also visit my new site: intermathematics.com for over 2000+ pdf pages of resources for teaching IB maths!

Projectile Motion III: Varying gravity

We can also do some interesting things with projectile motion if we vary the gravitational pull when we look at projectile motion.  The following graphs are all plotted in parametric form.

Screen Shot 2020-04-06 at 1.17.08 PM

Here t is the parameter, v is the initial velocity which we will keep constant, theta is the angle of launch which we will vary, and g is the gravitational constant which on Earth we will take as 9.81 m/s2.

Earth 

Say we take a projectile and launch it with a velocity of 10 m/s.  When we vary the angle of launch we get the folowing graphs:

Screen Shot 2020-04-08 at 9.56.08 AM

On the y axis we have the vertical height, and on the x axis the horizontal distance.  Therefore we can see that the maximum height that we achieve is around 5m and the maximum horizontal distance is around 10m.

Other planets and universal objects

We have the following values for the gravitational pull of various objects:

Enceladus (Moon of Saturn): 0.111 m/s2, The Moon: 1.62 m/s2,  Jupiter: 24.8 m/s2, The Sun: 274 m/s2, White dwarf black hole surface gravity: 7×1012m/s2.

So for each one let’s see what would happen if we launched a projectile with a velocity of 10 m/s.  Note that the mass of the projectile is not relevant (though it would require more force to achieve the required velocity).

Enceladus:

Screen Shot 2020-04-08 at 10.24.18 AM

The Moon:

Screen Shot 2020-04-08 at 10.25.23 AM

Jupiter:

Screen Shot 2020-04-08 at 10.26.10 AM

The Sun:

Screen Shot 2020-04-08 at 10.26.56 AM

Black hole surface gravity:

This causes some issues graphically!  I’ll use the equations derived in the last post to find the coordinates of the maximum point for a given launch angle theta:

Screen Shot 2020-04-08 at 10.35.01 AM

Here we have v = 10 and g = 7×1012m/s2.  For example if we take our launch angle (theta) as 45 degrees this will give the coordinates of the maximum point at:

(7.14×10-12, 3.57×10-12).

Summary:

We can see how dramatically life would be on each surface!  Whilst on Earth you may be able to throw to a height of around 5m with a launch velocity of 10 m/s., Enceladus  would see you achieve an incredible 450m.  If you were on the surface of the Sun then probably the least of your worries would be how hight to throw an object, nevertheless you’d be struggling to throw it 20cm high.  And as for the gravity at the surface of a black hole you wouldn’t get anywhere close to throwing it a nanometer high (1 billionth of a meter).

Essential Resources for IB Teachers

1) Intermathematics.com

Screen Shot 2021-08-21 at 1.07.49 PM

If you are a teacher then please also visit my new site.  This has been designed specifically for teachers of mathematics at international schools.  The content now includes over 2000 pages of pdf content for the entire SL and HL Analysis syllabus and also the SL Applications syllabus.  Some of the content includes:

  1. Original pdf worksheets (with full worked solutions) designed to cover all the syllabus topics.  These make great homework sheets or in class worksheets – and are each designed to last between 40 minutes and 1 hour.
  2. Original Paper 3 investigations (with full worked solutions) to develop investigative techniques and support both the exploration and the Paper 3 examination.
  3. Over 150 pages of Coursework Guides to introduce students to the essentials behind getting an excellent mark on their exploration coursework.
  4. A large number of enrichment activities such as treasure hunts, quizzes, investigations, Desmos explorations, Python coding and more – to engage IB learners in the course.

There is also a lot more.  I think this could save teachers 200+ hours of preparation time in delivering an IB maths course – so it should be well worth exploring!

Essential Resources for both IB teachers and IB students

1) Exploration Guides and Paper 3 Resources

Screen Shot 2021-12-01 at 1.19.14 PM

I’ve put together a 168 page Super Exploration Guide to talk students and teachers through all aspects of producing an excellent coursework submission.  Students always make the same mistakes when doing their coursework – get the inside track from an IB moderator!  I have also made Paper 3 packs for HL Analysis and also Applications students to help prepare for their Paper 3 exams.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.