**Fermat’s Theorem on the sum of two squares**

Not as famous as Fermat’s Last Theorem (which baffled mathematicians for centuries), Fermat’s Theorem on the sum of two squares is another of the French mathematician’s theorems.

Fermat asserted that all odd prime numbers p of the form 4n + 1 can be expressed as:

where x and y are both integers. No prime numbers of the form 4n+3 can be expressed this way.

This is quite a surprising theorem – why would we expect only some prime numbers to be expressed as the sum of 2 squares? To give some examples:

13 is a prime number of the form 4n+1 and can be written as 3^{2} + 2^{2}.

17 is also of the form 4n + 1 and can be written as 4^{2} + 1^{2}.

29 = 5^{2} + 2^{2}.

37 = 6^{2} + 1^{2}.

Prime numbers of the form 4n + 3 such as 7, 11, 19 can’t be written in this way.

The proof of this theorem is a little difficult. It is however easier to prove a similar (though not logically equivalent!) theorem:

All sums of x^{2} + y^{2} (x and y integers) are either of the form 4n + 1 or even.

In other words, for some n:

x^{2} + y^{2} = 4n + 1 or

x^{2} + y^{2} = 2n

We can prove this by looking at the possible scenarios for the choices of x and y.

**Case 1:**

x and y are both even (i.e. x = 2n and y = 2m for some n and m). Then

x^{2} + y^{2} = (2n)^{2} + (2m)^{2 }

x^{2} + y^{2} = 4n^{2} + 4m^{2}

x^{2} + y^{2} = 2(2n^{2} + 2m^{2})

which is even.

**Case 2:**

x and y are both odd (i.e. x = 2n+1 and y = 2m+1 for some n and m).

Then x^{2} + y^{2} = (2n+1)^{2} + (2m+1)^{2 }

x^{2} + y^{2} = 4n^{2}+ 4n + 1 + 4m^{2} + 4m + 1

x^{2} + y^{2} = 4n^{2}+ 4n + 4m^{2} + 4m + 2

x^{2} + y^{2} = 2(2n^{2} + 2m^{2} + 2m + 2n + 1).

which is even.

**Case 3:**

One of x and y is odd, one is even. Let’s say x is odd and y is even. (i.e. x = 2n+1 and y = 2m for some n and m).

Then x^{2} + y^{2} = (2n+1)^{2} + (2m)^{2 }

x^{2} + y^{2} = 4n^{2}+ 4n + 1 + 4m^{2}

x^{2} + y^{2} = 4(n^{2}+m^{2}+n) + 1

which is in the form 4k+1 (with k = (n^{2}+m^{2}+n) )

Therefore, the sum of any 2 integer squares will either be even or of the form 4n+1. Unfortunately this does not necessarily imply the reverse: that all numbers of the form 4n+1 are the sum of 2 squares (which would then prove Fermat’s Theorem). This is because,

A implies B

Does not necessarily mean that

B implies A

For example,

If A is “cats” and B is “have 4 legs”

A implies B (All cats have 4 legs)

B implies A (All things with 4 legs are cats).

A is logically sound, whereas B is clearly false.

This is a nice example of some basic number theory – such investigations into expressing numbers as the composition of 2 other numbers have led to some of the most enduring and famous mathematical puzzles.

The Goldbach Conjecture suggests that every even number greater than 2 can be expressed as the sum of 2 primes and has remained unsolved for over 250 years. Fermat’s Last Theorem lasted over 350 years before finally someone proved that a^{n} + b^{n}=c^{2 } has no positive integers a, b, and c which solve the equation for n greater than 2.

If you liked this post you might also like:

The Goldbach Conjecture – The Goldbach Conjecture states that every even integer greater than 2 can be expressed as the sum of 2 primes. No one has ever managed to prove this.

Mathematical Proof and Paradox – how we can “prove” the impossible

Essential resources for IB students:

Revision Village has been put together to help IB students with topic revision both for during the course and for the end of Year 12 school exams and Year 13 final exams. I would strongly recommend students use this as a resource during the course (not just for final revision in Y13!) There are specific resources for HL and SL students for both Analysis and Applications.

There is a comprehensive Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and then provides a large bank of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial. Really useful!

The Practice Exams section takes you to a large number of ready made quizzes, exams and predicted papers. These all have worked solutions and allow you to focus on specific topics or start general revision. This also has some excellent challenging questions for those students aiming for 6s and 7s.

Each course also has a dedicated video tutorial section which provides 5-15 minute tutorial videos on every single syllabus part – handily sorted into topic categories.

2) Exploration Guides and Paper 3 Resources

I’ve put together four comprehensive pdf guides to help students prepare for their exploration coursework and Paper 3 investigations. The exploration guides talk through the marking criteria, common student mistakes, excellent ideas for explorations, technology advice, modeling methods and a variety of statistical techniques with detailed explanations. I’ve also made 17 full investigation questions which are also excellent starting points for explorations. The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

## 4 comments

Comments feed for this article

April 15, 2014 at 7:36 am

VivianI believe that is a picture of Newton, not Fermat.

April 15, 2014 at 2:03 pm

Ibmathsresources.comthanks – I have now updated it!

July 5, 2017 at 9:57 am

Ali Adamsthat a^2 + b^2 =c^2 has no positive integers a, b, and c which solve the equation for n greater than 2.

should read

that a^n + b^n =c^n has no positive integers a, b, and c which solve the equation for n greater than 2.

enjoy this

http://heliwave.com/114.txt

Ali

July 27, 2017 at 10:15 am

Ibmathsresources.comthanks – updated.