If you are a teacher then please also visit my new site: intermathematics.com for over 2000+ pdf pages of resources for teaching IB maths!

Sequence Investigation

This is a nice investigation idea from Nrich.  The above screen capture is from their Picture Story puzzle.  We have successive cubes – a 1x1x1 cube, a 2x2x2 cube etc.

The cubes are then rearranged to give the following shape.  The puzzle is then to use this information to discover a mathematical relationship.  This was my first attempt at this:

13 = 12
23 = (1+2)2 – 12
33 = (1+2+3)2 – (1+2)2
43 = (1+2+3+4)2 – (1+2+3)2

n3 = (1+2+3+4+…+n)2 – (1+2+3+…+ (n-1))2

This is not an especially attractive relationship – but nevertheless we have discovered a mathematical relationship using the geometrical figures above. Next let’s see why the RHS is the same as the LHS.

RHS:

(1+2+3+4+…+n)2 – (1+2+3+…+ (n-1))2

= ([1+2+3+4+…+ (n-1)] + n)2 – (1+2+3+…+ (n-1))2

= (1+2+3+…+ (n-1))2 + n2 + 2n(1+2+3+4+…+ (n-1)) – (1+2+3+…+ (n-1))2

= n2 + 2n(1+2+3+4+…+ (n-1))

next we notice that 1+2+3+4+…+ (n-1) is the sum of an arithmetic sequence first term 1, common difference 1 so we have:

1+2+3+4+…+ (n-1) = (n-1)/2 (1 + (n-1) )

1+2+3+4+…+ (n-1) = (n-1)/2 + (n-1)2/2

1+2+3+4+…+ (n-1) = (n-1)/2 + (n2 – 2n + 1)/2

Therefore:

2n(1+2+3+4+…+ (n-1)) = 2n ( (n-1)/2 + (n2 – 2n + 1)/2 )

2n(1+2+3+4+…+ (n-1)) = n2 -n + n3 – 2n2 + n

Therefore

n2 + 2n(1+2+3+4+…+ (n-1)) = n2 + n2 -n + n3 – 2n2 + n
n2 + 2n(1+2+3+4+…+ (n-1)) = n3

and we have shown that the RHS does indeed simplify to the LHS – as we would expect.

An alternative relationship

13 = 12
13+23 = (1+2)2
13+23+33  = (1+2+3)2
13+23+33+…n3  = (1+2+3+…+n)2

This looks a bit nicer – and this is a well known relationship between cubes and squares.  Could we prove this using induction?  Well we can show it’s true for n =1.  Then we can assume true for n=k:

13+23+33+…k3  = (1+2+3+…+k)2

Then we want to show true for n = k+1

ie.

13+23+33+… k3  + (k+1)3= (1+2+3+…+k + (k+1))2

LHS:

13+23+33+… k3  + (k+1)3

= (1+2+3+…+k)2 + (k+1)3

RHS:

(1+2+3+…+k + (k+1))2

= ([1+2+3+…+k] + (k+1) )2

= [1+2+3+…+k]2 + (k+1)2 + 2(k+1)[1+2+3+…+k]

= [1+2+3+…+k]+ (k+1)2 + 2(k+1)(k/2 (1+k))   (sum of a geometric formula)

= [1+2+3+…+k]+ (k+1)2 + 2(k+1)(k/2 (1+k))

= [1+2+3+…+k] + k3+ 3k2 + 3k + 1

= (1+2+3+…+k)2 + (k+1)3

Therefore we have shown that the LHS = RHS and using our induction steps have shown it’s true for all n.  (Write this more formally for a real proof question in IB!)

So there we go – a couple of different mathematical relationships derived from a simple geometric pattern – and been able to prove the second one (the first one would proceed in a similar manner).  This sort of free-style pattern investigation where you see what maths you can find in a pattern could make an interesting maths IA topic.

Essential Resources for IB Teachers

1) Intermathematics.com

Screen Shot 2021-08-21 at 1.07.49 PM

If you are a teacher then please also visit my new site.  This has been designed specifically for teachers of mathematics at international schools.  The content now includes over 2000 pages of pdf content for the entire SL and HL Analysis syllabus and also the SL Applications syllabus.  Some of the content includes:

  1. Original pdf worksheets (with full worked solutions) designed to cover all the syllabus topics.  These make great homework sheets or in class worksheets – and are each designed to last between 40 minutes and 1 hour.
  2. Original Paper 3 investigations (with full worked solutions) to develop investigative techniques and support both the exploration and the Paper 3 examination.
  3. Over 150 pages of Coursework Guides to introduce students to the essentials behind getting an excellent mark on their exploration coursework.
  4. A large number of enrichment activities such as treasure hunts, quizzes, investigations, Desmos explorations, Python coding and more – to engage IB learners in the course.

There is also a lot more.  I think this could save teachers 200+ hours of preparation time in delivering an IB maths course – so it should be well worth exploring!

Essential Resources for both IB teachers and IB students

1) Exploration Guides and Paper 3 Resources

Screen Shot 2021-12-01 at 1.19.14 PM

I’ve put together a 168 page Super Exploration Guide to talk students and teachers through all aspects of producing an excellent coursework submission.  Students always make the same mistakes when doing their coursework – get the inside track from an IB moderator!  I have also made Paper 3 packs for HL Analysis and also Applications students to help prepare for their Paper 3 exams.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.