You are currently browsing the tag archive for the ‘Sierpinski Triangle’ tag.

Sierpinski Triangle: A picture of infinity

This pattern of a Sierpinski triangle pictured above was generated by a simple iterative program.  I made it by modifying the code previously used to plot the Barnsley Fern. You can run the code I used on repl.it.  What we are seeing is the result of 30,000 iterations of a simple algorithm.  The algorithm is as follows:

Transformation 1:

xi+1 = 0.5xi

yi+1= 0.5yi

Transformation 2:

xi+1 = 0.5xi + 0.5

yi+1= 0.5yi+0.5

Transformation 3:

xi+1 = 0.5xi +1

yi+1= 0.5yi

So, I start with (0,0) and then use a random number generator to decide which transformation to use.  I can run a generator from 1-3 and assign 1 for transformation 1, 2 for transformation 2, and 3 for transformation 3.   Say I generate the number 2 – therefore I will apply transformation 2.

xi+1 = 0.5(0) + 0.5

yi+1= 0.5(0)+0.5

and my new coordinate is (0.5,0.5).  I mark this on my graph.

I then repeat this process – say this time I generate the number 3.  This tells me to do transformation 3.  So:

xi+1 = 0.5(0.5) +1

yi+1= 0.5(0.5)

and my new coordinate is (1.25, 0.25).  I mark this on my graph and carry on again.  The graph above was generated with 30,000 iterations.

Altering the algorithm

We can alter the algorithm so that we replace all the 0.5 coefficients of x and y with another number, a.

a = 0.3 has disconnected triangles:

When a = 0.7 we still have a triangle:

By a = 0.9 the triangle is starting to degenerate

By a = 0.99 we start to see the emergence of a line “tail”

By a = 0.999 we see the line dominate.

And when a = 1 we then get a straight line:

When a is greater than 1 the coordinates quickly become extremely large and so the scale required to plot points means the disconnected points are not visible.

If I alternatively alter transformations 2 and 3 so that I add b for transformation 2 and 2b for transformation 3 (rather than 0.5 and 1 respectively) then we can see we simply change the scale of the triangle.

When b = 10 we can see the triangle width is now 40 (we changed b from 0.5 to 10 and so made the triangle 20 times bigger in length):

Fractal mathematics

This triangle is an example of a self-similar pattern – i.e one which will look the same at different scales.  You could zoom into a detailed picture and see the same patterns repeating.  Amazingly fractal patterns don’t fit into our usual understanding of 1 dimensional, 2 dimensional, 3 dimensional space.  Fractals can instead be thought of as having fractional dimensions.

The Hausdorff dimension is a measure of the “roughness” or “crinkley-ness” of a fractal.  It’s given by the formula:

D = log(N)/log(S)

For the Sierpinski triangle, doubling the size (i.e S = 2), creates 3 copies of itself (i.e N =3)

This gives:

D = log(3)/log(2)

Which gives a fractal dimension of about 1.59.  This means it has a higher dimension than a line, but a lower dimension than a 2 dimensional shape.

 

Website Stats

  • 7,441,179 views

IB Maths Exploration Guide

IB Maths Exploration Guide

A comprehensive 63 page pdf guide to help you get excellent marks on your maths investigation. Includes:

  1. Investigation essentials,
  2. Marking criteria guidance,
  3. 70 hand picked interesting topics
  4. Useful websites for use in the exploration,
  5. A student checklist for top marks
  6. Avoiding common student mistakes
  7. A selection of detailed exploration ideas
  8. Advice on using Geogebra, Desmos and Tracker.

Available to download here.

IB Exploration Modelling and Statistics Guide


IB Exploration Modelling and Statistics Guide

A 60 page pdf guide full of advice to help with modelling and statistics explorations – focusing in on non-calculator methods in order to show good understanding. Includes:

  1. Pearson’s Product: Height and arm span
  2. How to calculate standard deviation by hand
  3. Binomial investigation: ESP powers
  4. Paired t tests and 2 sample t tests: Reaction times
  5. Chi Squared: Efficiency of vaccines
  6. Spearman’s rank: Taste preference of cola
  7. Linear regression and log linearization.
  8. Quadratic regression and cubic regression.
  9. Exponential and trigonometric regression.

Available to download here.

Recent Posts

Follow IB Maths Resources from British International School Phuket on WordPress.com