You are currently browsing the tag archive for the ‘probability’ tag.

Generating e through probability and hypercubes

This is a really beautiful solution to an interesting probability problem posed by fellow IB teacher Daniel Hwang, for which I’ve outlined a method for solving suggested by Ferenc Beleznay.  The problem is as follows:

On average, how many random real numbers from 0 to 1 (inclusive) are required for the sum to exceed 1?

1 number

Clearly if we choose only 1 number then we can’t exceed 1.

2 numbers

Here we imagine the 2 numbers we pick as x and y and therefore we can represent them as a coordinate pair.  The smallest pair (0,0) and the largest pair (1,1).  This means that the possible coordinates fit inside the unit square shown above.  We want to know for what coordinate pairs we have the inequality x + y > 1.  This can be rearrange to give y > 1-x.  The line y = 1-x is plotted and we can see that any coordinate points in the triangle BCD satisfy this inequality.  Therefore the probability of a random coordinate pair being in this triangle is 1/2.

3 numbers

This time we want to find the probability that we exceed 1 with our third number.  We can consider the numbers as x, y, z and therefore as 3D coordinates (x,y,z).  From the fact that we are choosing a third number we must already have x +y <1. We draw the line x+y = 1, which in 3D gives us a plane.  The volume in which our coordinate point must lie is the prism ABDEFG.

We now also add the constraint x+y+z >1.  This creates the plane as shown.  If our coordinate lies inside the pyramid ABDE then our coordinates will add to less than 1, outside this they will add to more than 1.

The volume of the pyramid ABDE = 1/3 (base area)(perpendicular height).

The volume of the prism ABDEFG =  (base area)(perpendicular height).

Given that they share the same perpendicular height and base area then precisely 1/3 of the available volume would give a coordinate point that adds to less than 1, and 2/3 of the available volume would give a coordinate point that adds to more than 1.

Therefore we have the following tree diagram:

Exceeds 1 with 2 numbers = 1/2

Does not exceed 1 with 2 numbers, exceeds 1 with 3 numbers = 1/2 x 2/3 = 1/3.

Does not exceed 1 with 2 numbers, does not exceed 1 with 3 numbers = 1/2 x 1/3 = 1/6.

4 numbers

If you been following so far this is where things get interesting!  We can now imagine a 4 dimensional unit cube (image above from Wikipedia) and a 4D coordinate point (x,y,z,a).

Luckily all we care about is the ratio of the 4-D pyramid and the 4-D prim formed by our constraints x+y+z <1 and x+y+z+a >1.

We have the following formula to help:

The n-D volume of a n-D pyramid = 1/n (base)(perpendicular height).

Therefore:

The 4-D volume of a 4-D pyramid = 1/4 (base 3D volume)(perpendicular height).

The 4-D volume of the prism ABDEFG = (base 3D volume)(perpendicular height).

Given that the 2 shapes share the same base and perpendicular height,  the hyper-pyramid occupies exactly 1/4 of the 4-D space of the hyper-prism.  So the probability of being in this space is 1/4 and 3/4 of being outside this space.

We can now extend our tree diagram:

Does not exceed 1 with 2 numbers, does not exceed 1 with 3 numbers, exceeds with 4 numbers = 1/2 x 1/3 x 3/4 = 1/8

Does not exceed 1 with 2 numbers, does not exceed 1 with 3 numbers, does not exceed with 4 numbers = 1/2 x 1/3 x 1/4 = 1/24.

In general a hyper-pyramid in n dimensional space occupies exactly 1/n of the space of the hyper-prism – so we can now continue this tree diagram.

Expected value

We can make a table of probabilities to find how many numbers we expect to use in order to exceed one.

Which gives us the following expected value calculation:

Which we can rewrite as:

But we have:

Therefore this gives:

So on average we would need to pick numbers for the sum to exceed one! This is quite a remarkable result – e, one of the fundamental mathematical constants has appeared as if by magic on a probability question utilizing hyper-dimensional shapes.

Demonstrating this with Python

Running the Python code shown above will simulate doing this experiment.  The computer generates a “random” number, then another and carries on until the sum is greater than 1.  It then records how many numbers were required.  It then does this again 1 million times and finds the average from all the trials.

1 million simulations gives 2.7177797177797176.  When we compare this with the real answer for e, 2.7182818284590452353602874713527, we can see it has taken 1 million simulations to only be correct to 4sf.

Even 5 million simulations only gives 2.7182589436517888, so whilst we can clearly see that we will eventually get e, it’s converging very slowly.  This may be because we are reliant on a random number generator which is not truly random (and only chooses numbers to a maximum number of decimal places rather than choosing from all values between 0 and 1).

I think this is a beautiful example of the unexpected nature of mathematics – we started out with a probability problem and ended up with e, via a detour into higher dimensional space!  We can also see the power of computers in doing these kinds of brute force calculations.

Essential resources for IB students:

1) Revision Village

Screen Shot 2021-05-19 at 9.55.51 AM

Revision Village has been put together to help IB students with topic revision both for during the course and for the end of Year 12 school exams and Year 13 final exams.  I would strongly recommend students use this as a resource during the course (not just for final revision in Y13!) There are specific resources for HL and SL students for both Analysis and Applications.

Screen Shot 2018-03-19 at 4.42.05 PM.png

There is a comprehensive Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and then provides a large bank of graded questions.  What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial.  Really useful!

Screen Shot 2021-05-19 at 10.05.18 AM

The Practice Exams section takes you to a large number of ready made quizzes, exams and predicted papers.   These all have worked solutions and allow you to focus on specific topics or start general revision.  This also has some excellent challenging questions for those students aiming for 6s and 7s.

Each course also has a dedicated video tutorial section which provides 5-15 minute tutorial videos on every single syllabus part – handily sorted into topic categories.

2) Exploration Guides and Paper 3 Resources

Screen Shot 2021-05-19 at 6.32.13 PM

I’ve put together four comprehensive pdf guides to help students prepare for their exploration coursework and Paper 3 investigations. The exploration guides talk through the marking criteria, common student mistakes, excellent ideas for explorations, technology advice, modeling methods and a variety of statistical techniques with detailed explanations. I’ve also made 17 full investigation questions which are also excellent starting points for explorations.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

 

About

All content on this site has been written by Andrew Chambers (MSc. Mathematics, IB Mathematics Examiner). Please contact here for information on webinar training or for business ideas.

Website Stats

  • 8,155,844 views

Getting a 7 in IB Maths Exploration Coursework

Getting a 7 in IB Maths Exploration Coursework

I’ve teamed up with Udemy – the world’s leading provider of online courses to create a comprehensive online guide to the exploration.  It includes 9 tutorial videos totaling 2 hours 30 minutes of essential information designed to ensure you get the best possible grade.

You can sign up for this course for 40% off the standard price by using the coupon: JULYDISCOUNT.  (Expires 20/08/21).

See the free preview here.

IB Maths Exploration Guide

IB Maths Exploration Guide

A comprehensive 63 page pdf guide to help you get excellent marks on your maths investigation. Includes:

  1. Investigation essentials,
  2. Marking criteria guidance,
  3. 70 hand picked interesting topics
  4. Useful websites for use in the exploration,
  5. A student checklist for top marks
  6. Avoiding common student mistakes
  7. A selection of detailed exploration ideas
  8. Advice on using Geogebra, Desmos and Tracker.

Available to download here.

IB HL Paper 3 Practice Questions (120 page pdf)

IB HL Paper 3 Practice Questions 

Seventeen full investigation questions – each one designed to last around 1 hour, and totaling around 40 pages and 600 marks worth of content.  There is also a fully typed up mark scheme.  Together this is around 120 pages of content.

Available to download here.

Modelling Guide


IB Exploration Modelling Guide 

A 50 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Modelling Guide includes:

Linear regression and log linearization, quadratic regression and cubic regression, exponential and trigonometric regression, comprehensive technology guide for using Desmos and Tracker.

Available to download here.

Statistics Guide

IB Exploration Statistics Guide

A 55 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Statistics Guide includes: Pearson’s Product investigation, Chi Squared investigation, Binomial distribution investigation, t-test investigation, sampling techniques, normal distribution investigation and how to effectively use Desmos to represent data.

Available to download here.

IB Revision Notes

IB Revision Notes

Full revision notes for SL Analysis (60 pages), HL Analysis (112 pages) and SL Applications (53 pages).  Beautifully written by an experienced IB Mathematics teacher, and of an exceptionally high quality.  Fully updated for the new syllabus.  A must for all Analysis and Applications students!

Available to download here.

Recent Posts

Follow IB Maths Resources from Intermathematics on WordPress.com