You are currently browsing the tag archive for the ‘virus’ tag.

wuhan flu

If you are a teacher then please also visit my new site: intermathematics.com for over 2000+ pdf pages of resources for teaching IB maths!

Using Maths to model the spread of Coronavirus (COVID-19)

This coronavirus is the latest virus to warrant global fears over a disease pandemic.  Throughout history we have seen pandemic diseases such as the Black Death in Middle Ages Europe and the Spanish Flu at the beginning of the 20th century. More recently we have seen HIV responsible for millions of deaths.  In the last few years there have been scares over bird flu and SARS – yet neither fully developed into a major global health problem.  So, how contagious is COVID-19, and how can we use mathematics to predict its spread?

Modelling disease outbreaks with real accuracy is an incredibly important job for mathematicians and all countries employ medical statisticians for this job .  Understanding how diseases spread and how fast they can spread through populations is essential to developing effective medical strategies to minimise deaths.  If you want to save lives maybe you should become a mathematician rather than a doctor!

Currently scientists know relatively little about the new virus – but they do know that it’s the same coronavirus family as SARS and MERS which can both cause serious respiratory problems.  Scientists are particularly interested in trying to discover how infectious the virus is, how long a person remains contagious, and whether people can be contagious before they show any symptoms.

In the case of COVID-19 we have the following early estimated values: [From a paper published by medical statisticians in the UK on January 24]

R0. between 3.6 and 4. This is defined as how many people an infectious person will pass on their infection to in a totally susceptible population.  The higher the R0. value the more quickly an infection will spread.  By comparison seasonal flu has a R0. value around 2.8.

Total number infected by January 21:  prediction interval 9,217–14,245.  Of these an estimated 3,050–4,017 currently with the virus and the others recovered (or died).  This is based on an estimation that only around 5% of cases have been diagnosed.  By February 4th they predict 132,751–273,649 will be infected.

Transmission rate β estimated at 1.07.  β represents the transmission rate per day – so on average an infected person will infect another 1.07 people a day.

Infectious period estimated at 3.6 days. We can therefore calculate μ (the per capita recovery rate) by μ = 1/(3.6). This tells us how quickly people will be removed from the population (either recovered and become immune or died)

SIR Model

The basic model is based on the SIR model.  The SIR model looks at how much of the population is susceptible to infection (S), how many of these go on to become infectious (I), and how many of these are removed (R) from the population being considered (i.e they either recover and thus won’t catch the virus again, or die).

ebola6

The Guardian datablog have an excellent graphic to show the contagiousness relative to deadliness of different diseases [click to enlarge, or follow the link].  We can see that seasonal flu has an R0. value of around 2.8 and a fatality rate of around 0.1%, whereas measles has an R0. value of around 15 and a fatality rate of around 0.3%.  This means that measles is much more contagious than seasonal flu.

You can notice that we have nothing in the top right hand corner (very deadly and very contagious). This is just as well as that could be enough to seriously dent the human population. Most diseases we worry about fall into 2 categories – contagious and not very deadly or not very contagious and deadly.

ebola

The equations above represent a SIR (susceptible, infectious, removed) model which can be used to model the spread of diseases like flu.

dS/dt represents the rate of change of those who are susceptible to the illness with respect to time.  dI/dt represents the rate of change of those who are infected with respect to time.  dR/dt represents the rate of change of those who have been removed with respect to time (either recovered or died).

For example, if dI/dt is high then the number of people becoming infected is rapidly increasing.  When dI/dt is zero then there is no change in the numbers of people becoming infected (number of infections remain steady).  When dI/dt is negative then the numbers of people becoming infected is decreasing.

Modelling for COVID-19

N is the total population.  Let’s take as the population of Wuhan as 11 million.

μ is the per capita recovery (Calculated by μ = 1/(duration of illness) ).  We have μ = 1/3.6 = 5/18.

β the transmission rate as approximately 1.07

Therefore our 3 equations for rates of change become:

dS/dt = -1.07 S I /11,000,000

dI/dt = 1.07 S I /11,000,000 – 5/18 I

dR/dt = 5/18 I

Unfortunately these equations are very difficult to solve – but luckily we can use a computer program  or spreadsheet to plot what happens.   We need to assign starting values for S, I and R – the numbers of people susceptible, infectious and removed.  With the following values for January 21: S = 11,000,000, I = 3500, R = 8200, β = 1.07, μ = 5/18, I designed the following Excel spreadsheet (instructions on what formula to use here):

wuhan flu

This gives a prediction that around 3.9 million people infected within 2 weeks!  We can see that the SIR model that we have used is quite simplistic (and significantly different to the expert prediction of around 200,000 infected).

So, we can try and make things more realistic by adding some real life considerations.  The current value of β (the transmission rate) is 1.07, i.e an infected person will infect another 1.07 people each day.  We can significantly reduce this if we expect that infected people are quarantined effectively so that they do not interact with other members of the public, and indeed if people who are not sick avoid going outside.  So, if we take β as (say) 0.6 instead we get the following table:

Screen Shot 2020-01-29 at 6.18.48 AM

Here we can see that this change to β has had a dramatic effect to our model.  Now we are predicting around 129,000 infected after 14 days – which is much more in line with the estimate in the paper above.

As we are seeing exponential growth in the spread, small changes to the parameters will have very large effects.  There are more sophisticated SIR models which can then be used to better understand the spread of a disease.  Nevertheless we can see clearly from the spreadsheet the interplay between susceptible, infected and recovered which is the foundation for understanding the spread of viruses like COVID-19.

[Edited in March to use the newly designated name COVID-19]

Essential resources for IB students:

1) Revision Village

Screen Shot 2021-05-19 at 9.55.51 AM

Revision Village has been put together to help IB students with topic revision both for during the course and for the end of Year 12 school exams and Year 13 final exams.  I would strongly recommend students use this as a resource during the course (not just for final revision in Y13!) There are specific resources for HL and SL students for both Analysis and Applications.

Screen Shot 2018-03-19 at 4.42.05 PM.png

There is a comprehensive Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and then provides a large bank of graded questions.  What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial.  Really useful!

Screen Shot 2021-05-19 at 10.05.18 AM

The Practice Exams section takes you to a large number of ready made quizzes, exams and predicted papers.   These all have worked solutions and allow you to focus on specific topics or start general revision.  This also has some excellent challenging questions for those students aiming for 6s and 7s.

Essential Resources for IB Teachers

1) Intermathematics.com

Screen Shot 2021-08-21 at 1.07.49 PM

If you are a teacher then please also visit my new site.  This has been designed specifically for teachers of mathematics at international schools.  The content now includes over 2000 pages of pdf content for the entire SL and HL Analysis syllabus and also the SL Applications syllabus.  Some of the content includes:

  1. Original pdf worksheets (with full worked solutions) designed to cover all the syllabus topics.  These make great homework sheets or in class worksheets – and are each designed to last between 40 minutes and 1 hour.
  2. Original Paper 3 investigations (with full worked solutions) to develop investigative techniques and support both the exploration and the Paper 3 examination.
  3. Over 150 pages of Coursework Guides to introduce students to the essentials behind getting an excellent mark on their exploration coursework.
  4. A large number of enrichment activities such as treasure hunts, quizzes, investigations, Desmos explorations, Python coding and more – to engage IB learners in the course.

There is also a lot more.  I think this could save teachers 200+ hours of preparation time in delivering an IB maths course – so it should be well worth exploring!

Essential Resources for both IB teachers and IB students

1) Exploration Guides and Paper 3 Resources

Screen Shot 2021-12-01 at 1.19.14 PM

I’ve put together a 168 page Super Exploration Guide to talk students and teachers through all aspects of producing an excellent coursework submission.  Students always make the same mistakes when doing their coursework – get the inside track from an IB moderator!  I have also made Paper 3 packs for HL Analysis and also Applications students to help prepare for their Paper 3 exams.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

Website Stats

  • 8,773,523 views

About

All content on this site has been written by Andrew Chambers (MSc. Mathematics, IB Mathematics Examiner).

New website for International teachers

I’ve just launched a brand new maths site for international schools – over 2000 pdf pages of resources to support IB teachers.  If you are an IB teacher this could save you 200+ hours of preparation time.

Explore here!

Free HL Paper 3 Questions

P3 investigation questions and fully typed mark scheme.  Packs for both Applications students and Analysis students.

Available to download here

IB Maths Super Exploration Guide

A Super Exploration Guide with 168 pages of essential advice from a current IB examiner to ensure you get great marks on your coursework.

Available to download here.

Recent Posts

Follow IB Maths Resources from Intermathematics on WordPress.com