You are currently browsing the tag archive for the ‘super brain’ tag.

Screen Shot 2020-08-29 at 6.57.23 PM

Have you got a Super Brain?

Adapting and exploring maths challenge problems is an excellent way of finding ideas for IB maths explorations and extended essays.  This problem is taken from the book: The first 25 years of the Superbrain challenges.  I’m going to see how many different ways I can solve it.

Screen Shot 2020-08-29 at 7.03.13 PM

The problem is to find all the integer solutions to the equation above.  Finding only integer solutions is a fundamental part of number theory – a branch of mathematics that only deals with integers.  

Method number 1: Brute force

Screen Shot 2020-08-29 at 7.05.45 PM

This is a problem that computers can make short work of.  Above I wrote a very simple Python program which checked all values of x and y between -99 and 99.  This returned the only solution pairs as:

Screen Shot 2020-08-29 at 7.07.41 PM

Clearly we have not proved these are the only solutions – but even by modifying the code to check more numbers, no more pairs were found.

Method number 2: Solving a linear equation

We can notice that the equation is linear in terms of y, and so rearrange to make y the subject.

Screen Shot 2020-08-29 at 7.43.24 PM

We can then use either polynomial long division or the method of partial fractions to rewrite this.  I’ll use partial fractions.  The general form for this fraction can be written as follows:

Screen Shot 2020-08-29 at 7.43.33 PM

Next I multiply by the denominator and the compare coefficients of terms.

Screen Shot 2020-08-29 at 7.43.40 PM

This therefore gives:

Screen Shot 2020-08-29 at 7.43.48 PM

I can now see that there will only be an integer solution for y when the denominator of the fraction is a factor of 6.  This then gives (ignoring non integer solutions):

Screen Shot 2020-08-29 at 7.43.53 PM

I can then substitute these back to find my y values, which give me the same 4 coordinate pairs as before:

Screen Shot 2020-08-29 at 7.07.41 PM

Method number 3: Solving a quadratic equation

I start by making a quadratic in x:

Screen Shot 2020-08-29 at 7.51.35 PM

I can then use the quadratic formula to find solutions:

Screen Shot 2020-08-29 at 7.51.41 PM

Which I can simplify to give:

Screen Shot 2020-08-29 at 7.51.46 PM

Next I can note that x will only be an integer solution if the expression inside the square root is a square number.  Therefore I have:

Screen Shot 2020-08-29 at 7.51.54 PM

Next I can solve a new quadratic as follows:

Screen Shot 2020-08-29 at 7.51.59 PM

Screen Shot 2020-08-29 at 7.52.05 PM

As before I notice that the expression inside my square root must be a square number.  Now I can see that I need to find m and n such that I have 2 square numbers with a difference of 24.  I can look at the first 13 square numbers to see that from the 12th and 13th square numbers onwards there will also be a difference of more than 24.  Checking this list I can find that m = 1 and m = 5 will satisfy this equation.

Screen Shot 2020-08-29 at 7.52.12 PM

This then gives:

Screen Shot 2020-08-29 at 7.52.18 PM

which when I solve for integer solutions and then sub back into find x gives the same four solutions:

Screen Shot 2020-08-29 at 7.07.41 PM

Method number 4: Graphical understanding

Without rearranging I could imagine this as a 3D problem by plotting the 2 equations:

Screen Shot 2020-08-29 at 8.01.31 PM

This gives the following graph:

Screen Shot 2020-08-29 at 6.57.23 PM

We can see that the plane intersects the curve in infinite places.  I’ve marked A, B on the graph to illustrate 2 of the coordinate pairs which we have found.  This is a nice visualization but doesn’t help find our coordinates, so lets switch to 2D.

In 2D we can use our rearranged equation:

Screen Shot 2020-08-29 at 8.03.50 PM

This gives the following graph:

Screen Shot 2020-08-29 at 8.04.47 PM

Here I have marked on the solution pairs that we found.   The oblique asymptote (red) is y = 2x-1 because as x gets large the fraction gets very small and so the graph gets closer and closer to y = 2x -1. 

All points on this curve are solutions to the equation – but we can see that the only integer solution pairs will be when x is small.  When x is a large integer then the curve will be close to the asymptote and hence will return a number slightly bigger than an integer.

So, using this approach we would check all possible integer solutions when x is small, and again should be able to arrive at our coordinate pairs.

So, 4 different approaches that would be able to solve this problem.  Can you find any others?

 

Website Stats

  • 7,560,105 views

IB Maths Exploration Guide

IB Maths Exploration Guide

A comprehensive 63 page pdf guide to help you get excellent marks on your maths investigation. Includes:

  1. Investigation essentials,
  2. Marking criteria guidance,
  3. 70 hand picked interesting topics
  4. Useful websites for use in the exploration,
  5. A student checklist for top marks
  6. Avoiding common student mistakes
  7. A selection of detailed exploration ideas
  8. Advice on using Geogebra, Desmos and Tracker.

Available to download here.

IB HL Paper 3 Practice Questions (120 page pdf)

IB HL Paper 3 Practice Questions 

Seventeen full investigation questions – each one designed to last around 1 hour, and totaling around 40 pages and 600 marks worth of content.  There is also a fully typed up mark scheme.  Together this is around 120 pages of content.

Available to download here.

IB Exploration Modelling and Statistics Guide


IB Exploration Modelling and Statistics Guide

A 60 page pdf guide full of advice to help with modelling and statistics explorations – focusing in on non-calculator methods in order to show good understanding. Includes:

  1. Pearson’s Product: Height and arm span
  2. How to calculate standard deviation by hand
  3. Binomial investigation: ESP powers
  4. Paired t tests and 2 sample t tests: Reaction times
  5. Chi Squared: Efficiency of vaccines
  6. Spearman’s rank: Taste preference of cola
  7. Linear regression and log linearization.
  8. Quadratic regression and cubic regression.
  9. Exponential and trigonometric regression.

Available to download here.

Recent Posts

Follow IB Maths Resources from British International School Phuket on WordPress.com