You are currently browsing the tag archive for the ‘puzzles’ tag.

geometry

Visualising Algebra Through Geometry

This picture above is a fantastic example of how we can use geometry to visualise an algebraic expression.  It’s taken from Brilliant – which is a fantastic new forum for sharing maths puzzles.  This particular puzzle was created and uploaded by Arron Kau.  The question is, which of the following mathematical identities does this image represent?

geometry2

See if you can work it out!  I will put the answer in white text at the bottom of the post – highlight it to reveal the solution.

Another example of the power of geometry in representing mathematical problems is provided by Ian Stewart’s Cabinet of Mathematical Curiosities.  The puzzle itself is pretty famous:

A farmer wants to cross a river and take with him a wolf, a goat, and a cabbage. There is a boat that can fit himself plus either the wolf, the goat, or the cabbage. If the wolf and the goat are alone on one shore, the wolf will eat the goat. If the goat and the cabbage are alone on the shore, the goat will eat the cabbage. How can the farmer bring the wolf, the goat, and the cabbage across the river?

wolf goat cabbage

The standard way of solving it is trial and error with some logic thrown in.  However, as Ian Stewart points out, we can actually utilise 3 dimensional geometry to solve the puzzle.  We start with a 3D wolf-goat-cabbage (w,g,c) space (shown in the diagram).  All 3 start at (0,0,0).  0 represents this side of the bank, and 1 represents the far side of the bank.  The target is to get therefore to (1,1,1).  In (w,g,c) space , the x direction represents the wolf’s movements, the y direction the goat and z the cabbage.  Therefore the 8 possible triplet combinations are represented by the 8 vertices on a cube.

We can now cross out the 4 paths:

(0,0,0) to (1,00) as this leaves the goat with the cabbages

(0,0,0) to (0,0,1) as this leaves the wolf with the goat

(0,1,1) to (1,1,1) as the farmer would leave the goat and cabbage alone

(1,1,0) to (1,1,1) as the farmer would leave the wolf and goat alone.

which reduces the puzzle to a geometric problem – where we travel along the remaining edges – and the 2 solutions are immediately evident.

(eg.  (0,0,0) – (0,1,0) – (1,1,0) – (1,0,0) – (1,0,1)- (1,1,1)   )

What’s really nice about this solution is that it shows how problems seemingly unrelated to mathematics can be “translated” in mathematics – and also it shows how geometrical space can be used for problem solving.

Solution to the initial puzzle, highlight to reveal: The answer is the third option – 13 + 23…. = (1+2+….)2. This is quite a surprising identity. You can see it by seeing that there are (for example) 2 squares of length 2 – this gives you a total area of 2x2x2 = 23. Adding all the squares will give you the same area as a square of sides (1+2+3….)(1+2+3….) – hence the result.

resources for students

1) Exploration Guides and Paper 3 Resources

Screen Shot 2021-05-19 at 6.32.13 PM

I’ve put together four comprehensive pdf guides to help students prepare for their exploration coursework and Paper 3 investigations. The exploration guides talk through the marking criteria, common student mistakes, excellent ideas for explorations, technology advice, modeling methods and a variety of statistical techniques with detailed explanations. I’ve also made 17 full investigation questions which are also excellent starting points for explorations.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

puzzles

This is another interesting maths sequence puzzle:

When x = 1, y = 1, when x= 2, y = -1, when x = 3, y = 1,

a) if when x = 4, y = -1, what formula gives the nth term? 

b) if when x = 4, y = 3, what formula gives the nth term?

Answer below in white text (highlight to see)

a) This is a nice puzzle when studying periodic graphs. Hopefully it should be clear that this is a periodic function – and so can be modelled with either sine or cosine graphs.

One possibility would be cos((n-1)pi)

b) This fits well when studying the absolute function – and transformations of graphs. Plotting the first 3 points, we can see they fit a transformed absolute value function – stretched by a factor of 2, and translated by (2,-1). So the function 2abs(x-2) -1 fits the points given.

wolf goat cabbage

This is a really interesting take on a very well known puzzle (courtesy of Ian Stewart’s Cabinet of Mathematical Curiosities).

The puzzle itself is pretty famous:

A farmer wants to cross a river and take with him a wolf, a goat, and a cabbage. There is a boat that can fit himself plus either the wolf, the goat, or the cabbage. If the wolf and the goat are alone on one shore, the wolf will eat the goat. If the goat and the cabbage are alone on the shore, the goat will eat the cabbage. How can the farmer bring the wolf, the goat, and the cabbage across the river?

And the standard way of solving it is trial and error with some logic thrown in.  However, as Ian Stewart points out, we can actually utilise 3 dimensional geometry to solve the puzzle.  We start with a 3D wolf-goat-cabbage (w,g,c) space (shown in the diagram).  All 3 start at (0,0,0).  0 represents this side of the bank, and 1 represents the far side of the bank.  The target is to get therefore to (1,1,1).  In (w,g,c) space , the x direction represents the wolf’s movements, the y direction the goat and z the cabbage.  Therefore the 8 possible triplet combinations are represented by the 8 vertices on a cube.

We can now cross out the 4 paths:

(0,0,0) to (1,00) as this leaves the goat with the cabbages

(0,0,0) to (0,0,1) as this leaves the wolf with the goat

(0,1,1) to (1,1,1) as the farmer would leave the goat and cabbage alone

(1,1,0) to (1,1,1) as the farmer would leave the wolf and goat alone.

which reduces the puzzle to a geometric problem – where we travel along the remaining edges – and the 2 solutions are immediately evident.

(eg.  (0,0,0) – (0,1,0) – (1,1,0) – (1,0,0) – (1,0,1)- (1,1,1)   )

What’s really nice about this solution is that it shows how problems seemingly unrelated to mathematics can be “translated” in mathematics – and also it shows how geometrical space can be used for problem solving.

For a more complicated problem (that can’t be solved without going into 8 dimensions geometrically – so don’t use this method!) try this puzzle. It has a nice animation which allows you to do the problem online.  The problem is as follows:
Find a way to move this group of people across the river. Only 2 persons on the raft at a time. The father cannot stay with any of the daughters without their mother’s presence. The mother cannot stay with any of the sons without their father’s presence.  The thief (striped shirt) cannot stay with any family member if the Policeman is not there.  Only the Father, Mother and the Policeman know how to operate the raft.

Essential resources for IB students:

1) Exploration Guides and Paper 3 Resources

Screen Shot 2021-05-19 at 6.32.13 PM

I’ve put together four comprehensive pdf guides to help students prepare for their exploration coursework and Paper 3 investigations. The exploration guides talk through the marking criteria, common student mistakes, excellent ideas for explorations, technology advice, modeling methods and a variety of statistical techniques with detailed explanations. I’ve also made 17 full investigation questions which are also excellent starting points for explorations.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

Website Stats

  • 9,374,467 views

About

All content on this site has been written by Andrew Chambers (MSc. Mathematics, IB Mathematics Examiner).

New website for International teachers

I’ve just launched a brand new maths site for international schools – over 2000 pdf pages of resources to support IB teachers.  If you are an IB teacher this could save you 200+ hours of preparation time.

Explore here!

Free HL Paper 3 Questions

P3 investigation questions and fully typed mark scheme.  Packs for both Applications students and Analysis students.

Available to download here

IB Maths Super Exploration Guide

A Super Exploration Guide with 168 pages of essential advice from a current IB examiner to ensure you get great marks on your coursework.

Available to download here.

Recent Posts

Follow IB Maths Resources from Intermathematics on WordPress.com