You are currently browsing the tag archive for the ‘puzzles’ tag.

**Visualising Algebra Through Geometry**

This picture above is a fantastic example of how we can use geometry to visualise an algebraic expression. It’s taken from Brilliant – which is a fantastic new forum for sharing maths puzzles. This particular puzzle was created and uploaded by Arron Kau. The question is, which of the following mathematical identities does this image represent?

See if you can work it out! I will put the answer in white text at the bottom of the post – highlight it to reveal the solution.

Another example of the power of geometry in representing mathematical problems is provided by Ian Stewart’s Cabinet of Mathematical Curiosities. The puzzle itself is pretty famous:

*A farmer wants to cross a river and take with him a wolf, a goat, and a cabbage. There is a boat that can fit himself plus either the wolf, the goat, or the cabbage. If the wolf and the goat are alone on one shore, the wolf will eat the goat. If the goat and the cabbage are alone on the shore, the goat will eat the cabbage. How can the farmer bring the wolf, the goat, and the cabbage across the river?*

The standard way of solving it is trial and error with some logic thrown in. However, as Ian Stewart points out, we can actually utilise 3 dimensional geometry to solve the puzzle. We start with a 3D wolf-goat-cabbage (w,g,c) space (shown in the diagram). All 3 start at (0,0,0). 0 represents this side of the bank, and 1 represents the far side of the bank. The target is to get therefore to (1,1,1). In (w,g,c) space , the x direction represents the wolf’s movements, the y direction the goat and z the cabbage. Therefore the 8 possible triplet combinations are represented by the 8 vertices on a cube.

We can now cross out the 4 paths:

(0,0,0) to (1,00) as this leaves the goat with the cabbages

(0,0,0) to (0,0,1) as this leaves the wolf with the goat

(0,1,1) to (1,1,1) as the farmer would leave the goat and cabbage alone

(1,1,0) to (1,1,1) as the farmer would leave the wolf and goat alone.

which reduces the puzzle to a geometric problem – where we travel along the remaining edges – and the 2 solutions are immediately evident.

(eg. (0,0,0) – (0,1,0) – (1,1,0) – (1,0,0) – (1,0,1)- (1,1,1) )

What’s really nice about this solution is that it shows how problems seemingly unrelated to mathematics can be “translated” in mathematics – and also it shows how geometrical space can be used for problem solving.

Solution to the initial puzzle, highlight to reveal: The answer is the third option – 1^{3} + 2^{3}…. = (1+2+….)^{2}. This is quite a surprising identity. You can see it by seeing that there are (for example) 2 squares of length 2 – this gives you a total area of 2x2x2 = 2^{3}. Adding all the squares will give you the same area as a square of sides (1+2+3….)(1+2+3….) – hence the result.

This is another interesting maths sequence puzzle:

When x = 1, y = 1, when x= 2, y = -1, when x = 3, y = 1,

a) if when x = 4, y = -1, what formula gives the nth term?

b) if when x = 4, y = 3, what formula gives the nth term?

Answer below in white text (highlight to see)

a) This is a nice puzzle when studying periodic graphs. Hopefully it should be clear that this is a periodic function – and so can be modelled with either sine or cosine graphs.

One possibility would be cos((n-1)pi)

b) This fits well when studying the absolute function – and transformations of graphs. Plotting the first 3 points, we can see they fit a transformed absolute value function – stretched by a factor of 2, and translated by (2,-1). So the function 2abs(x-2) -1 fits the points given.

This is a really interesting take on a very well known puzzle (courtesy of Ian Stewart’s Cabinet of Mathematical Curiosities).

The puzzle itself is pretty famous:

*A farmer wants to cross a river and take with him a wolf, a goat, and a cabbage. There is a boat that can fit himself plus either the wolf, the goat, or the cabbage. If the wolf and the goat are alone on one shore, the wolf will eat the goat. If the goat and the cabbage are alone on the shore, the goat will eat the cabbage. How can the farmer bring the wolf, the goat, and the cabbage across the river?*

And the standard way of solving it is trial and error with some logic thrown in. However, as Ian Stewart points out, we can actually utilise 3 dimensional geometry to solve the puzzle. We start with a 3D wolf-goat-cabbage (w,g,c) space (shown in the diagram). All 3 start at (0,0,0). 0 represents this side of the bank, and 1 represents the far side of the bank. The target is to get therefore to (1,1,1). In (w,g,c) space , the x direction represents the wolf’s movements, the y direction the goat and z the cabbage. Therefore the 8 possible triplet combinations are represented by the 8 vertices on a cube.

We can now cross out the 4 paths:

(0,0,0) to (1,00) as this leaves the goat with the cabbages

(0,0,0) to (0,0,1) as this leaves the wolf with the goat

(0,1,1) to (1,1,1) as the farmer would leave the goat and cabbage alone

(1,1,0) to (1,1,1) as the farmer would leave the wolf and goat alone.

which reduces the puzzle to a geometric problem – where we travel along the remaining edges – and the 2 solutions are immediately evident.

(eg. (0,0,0) – (0,1,0) – (1,1,0) – (1,0,0) – (1,0,1)- (1,1,1) )

What’s really nice about this solution is that it shows how problems seemingly unrelated to mathematics can be “translated” in mathematics – and also it shows how geometrical space can be used for problem solving.

*Find a way to move this group of people across the river. Only 2 persons on the raft at a time. The father cannot stay with any of the daughters without their mother’s presence. The mother cannot stay with any of the sons without their father’s presence. The thief (striped shirt) cannot stay with any family member if the Policeman is not there. Only the Father, Mother and the Policeman know how to operate the raft.*

**IB Revision**

If you’re already thinking about your coursework then it’s probably also time to start planning some revision, either for the end of Year 12 school exams or Year 13 final exams. There’s a really great website that I would strongly recommend students use – you choose your subject (HL/SL/Studies if your exam is in 2020 or Applications/Analysis if your exam is in 2021), and then have the following resources:

The Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and each area then has a number of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial. Really useful!

The Practice Exams section takes you to ready made exams on each topic – again with worked solutions. This also has some harder exams for those students aiming for 6s and 7s and the Past IB Exams section takes you to full video worked solutions to every question on every past paper – and you can also get a prediction exam for the upcoming year.

I would really recommend everyone making use of this – there is a mixture of a lot of free content as well as premium content so have a look and see what you think.