You are currently browsing the tag archive for the ‘pure maths’ tag.

chineseremaindertheorem

The Chinese Remainder Theorem is a method to solve the following puzzle, posed by Sun Zi around the 4th Century AD.

What number has a remainder of 2 when divided by 3, a remainder of 3 when divided by 5 and a remainder of 2 when divided by 7?

There are a couple of methods to solve this.  Firstly it helps to understand the concept of modulus – for example 21 mod 6 means the remainder when 21 is divided by 6.  In this case the remainder is 3, so we can write 21 ≡ 3 (mod 6).  The ≡ sign means “equivalent to” and is often used in modulus questions.

Method 1:

1) We try to solve the first part of the question, What number has a remainder of 2 when divided by 3,

to do this we list the values of x ≡ 2 (mod 3).  x = 2,5,8,11,14,17……

2) We then look at the values in this list and see which ones also satisfy the second part of the question, What number has a remainder of 3 when divided by 5

From the list x = 2,5,8,11,14,17…… we can see that x = 8 has a remainder of 3 when divided by 5 (i.e 8  ≡ 3 (mod 5) )

3) We now start from 8 and count up in multiples of 15 (3 x 5 because we have mod 3 and mod 5 )

8, 23, 38, 53 …..

4) We look for a number on this list which satisfies the last part of the question, What number has a remainder of 2 when divided by 7?

With x = 8, 23, 38, 53 ….. we can see that x = 23 has a remainder of 2 when divided by 7 (i.e 23 ≡ 2 (mod 7) )

Therefore 23 satisfies all parts of the question.  When you divide it by 3 you get a remainder of 2, when you divide it by 5 you get a remainder of 3, and when you divide it by 7 you get a remainder of 2.  So, 23 is our answer.

The second method is quite a bit more complicated – but is a better method when dealing with large numbers.

Method 2

1) We rewrite the problem in terms of modulus.

x ≡ 2 (mod 3)

x ≡ 3 (mod 5)

x ≡ 2 (mod 7)

We assign a = 2, b = 3, c = 2.

2) We give the values m1 = 3 (because the first line is mod 3), m2 = 5 (because the second line is mod 5), m3 = 2 (because the third line is mod 7).

3) We calculate M = m1m2m3 = 3x5x7 = 105

4) We calculate M1 = M/m1 = 105/3 = 35
M2 = M/m2 = 105/5 = 21
M3 = M/m3 = 105/7 = 15

4) We then note that M1 ≡ 2 (mod 3), M2 ≡ 1 (mod 5), M3 ≡ 1 (mod 7)

5) We then look for the multiplicative inverse of M1. This is the number which when multiplied by M1 will give an answer of 1 (mod 3). This number is 2 because 2×2 = 4 ≡ 1 (mod 3). We assign A = 2

We then look for the multiplicative inverse of M2. This is the number which when multiplied by M2 will give an answer of 1 (mod 5). This number is 1 because 1×1 = 1 ≡ 1 (mod 3). We assign B = 1.

We then look for the multiplicative inverse of M3. This is the number which when multiplied by M3 will give an answer of 1 (mod 7). This number is 1 because 1×1 = 1 ≡ 1 (mod 7). We assign C = 1.

6) We now put all this together:

x = aM1A + bM2B + cM3C (mod M)

x = 2x35x2 + 3x21x1 + 2x15x1 = 233 ≡ 23 (mod 105)

That last method may seem a lot slower – but when working with large numbers is actually a lot quicker.  So there we go – that’s the method that Sun Zi noted more than 1500 years ago.  This topic whilst seemingly quite abstract is a good introduction to number theory – the branch of mathematics which deals with the properties of whole numbers.

Screen Shot 2018-03-19 at 5.29.06 PM

IB Revision

Screen Shot 2018-03-19 at 4.35.19 PM

If you’re already thinking about your coursework then it’s probably also time to start planning some revision, either for the end of Year 12 school exams or Year 13 final exams. There’s a really great website that I would strongly recommend students use – you choose your subject (HL/SL/Studies if your exam is in 2020 or Applications/Analysis if your exam is in 2021), and then have the following resources:

Screen Shot 2018-03-19 at 4.42.05 PM.pngThe Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and each area then has a number of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial.  Really useful!

Screen Shot 2019-07-27 at 10.02.40 AM

The Practice Exams section takes you to ready made exams on each topic – again with worked solutions.  This also has some harder exams for those students aiming for 6s and 7s and the Past IB Exams section takes you to full video worked solutions to every question on every past paper – and you can also get a prediction exam for the upcoming year.

I would really recommend everyone making use of this – there is a mixture of a lot of free content as well as premium content so have a look and see what you think.

Website Stats

  • 7,313,458 views

IB Maths Exploration Guide

IB Maths Exploration Guide

A comprehensive 63 page pdf guide to help you get excellent marks on your maths investigation. Includes:

  1. Investigation essentials,
  2. Marking criteria guidance,
  3. 70 hand picked interesting topics
  4. Useful websites for use in the exploration,
  5. A student checklist for top marks
  6. Avoiding common student mistakes
  7. A selection of detailed exploration ideas
  8. Advice on using Geogebra, Desmos and Tracker.

Available to download here.

IB Exploration Modelling and Statistics Guide


IB Exploration Modelling and Statistics Guide

A 60 page pdf guide full of advice to help with modelling and statistics explorations – focusing in on non-calculator methods in order to show good understanding. Includes:

  1. Pearson’s Product: Height and arm span
  2. How to calculate standard deviation by hand
  3. Binomial investigation: ESP powers
  4. Paired t tests and 2 sample t tests: Reaction times
  5. Chi Squared: Efficiency of vaccines
  6. Spearman’s rank: Taste preference of cola
  7. Linear regression and log linearization.
  8. Quadratic regression and cubic regression.
  9. Exponential and trigonometric regression.

Available to download here.

Recent Posts

Follow IB Maths Resources from British International School Phuket on WordPress.com