You are currently browsing the tag archive for the ‘projective geometry’ tag.

Animated GIF - Find & Share on GIPHY

The Tusi couple – A circle rolling inside a circle

Numberphile have done a nice video where they discuss some beautiful examples of trigonometry and circular motion and where they present the result shown above: a circle rolling within a circle, with the individual points on the small circle showing linear motion along the diameters of the large circle.  So let’s see what maths we need to create the image above.

 Projection of points

Animated GIF - Find & Share on GIPHY

We can start with the equation of a unit circle centred at the origin:

Screen Shot 2020-06-18 at 7.01.45 PM

and we can then define a point on this circle parametrically by the coordinate:

Screen Shot 2020-06-18 at 7.01.49 PM

Here t is the angle measured from the horizontal.

If we then want to see the projection of this point along the y-axis we can also plot:

Screen Shot 2020-06-18 at 7.01.53 PM

and to see the projection of this point along the x-axis we can also plot:

Screen Shot 2020-06-18 at 7.02.06 PM

By then varying t from 0 to 2 pi gives the animation above – where the black dot on the circle moves around the circle and there is a projection of its x and y coordinates on the axes.

Projection along angled lines

Screen Shot 2020-06-18 at 7.32.46 PM

I can then add a line through the origin at angle a to the horizontal:

Screen Shot 2020-06-18 at 7.35.25 PM

and this time I can project so that the line joining up the black point on the edge of the large circle intersects the dotted line in a right angle.

In order to find the parametric coordinate of this point projection I can use some right angled triangles as follows:

Screen Shot 2020-06-18 at 7.57.20 PM

The angle from the horizontal to my point A is t.  The angle from the horizontal to the slanted line is a.  The length of my radius BA is 1.  This gives me the length of BC.

Screen Shot 2020-06-18 at 7.53.30 PM

But I have the identity:

Screen Shot 2020-06-18 at 7.53.34 PM

Therefore this gives:

Screen Shot 2020-06-18 at 7.53.37 PM

And using some more basic trigonometry gives the following diagram:

Screen Shot 2020-06-18 at 8.00.53 PM

 

Therefore the parametric form of the projection of the point can be given as:

Screen Shot 2020-06-18 at 7.40.17 PM

Adding more lines

Screen Shot 2020-06-18 at 8.03.32 PM

I can add several more slanted lines through the origin.  You can see that each dot on the line is the right angle projection between the line and the point on the circle.  As we do this we can notice that the points on the lines look as though they form a circle.  By noticing that the new smaller circle is half the size of the larger circle, and that the centre of the smaller circle is half-way between the origin and the point on the large circle, we get:

Screen Shot 2020-06-18 at 8.07.58 PM

Screen Shot 2020-06-18 at 8.10.16 PM

We can the vary the position of the point on the large circle to then create our final image:

Animated GIF - Find & Share on GIPHY

We have a connection between both linear motion and circular motion and create the impression of a circle rolling inside another.

You can play around with this demos graph here.  All you need to do is either drag the black point around the circle, or press play for the t slider.

More ideas on projective geometry:

Screen Shot 2020-06-18 at 8.16.30 PM

Ferenc Beleznay has made this nice geogebra file here which shows a different way of drawing a connection between a moving point on a large circle and a circle half the size. Here we connect the red dot with the origin and draw the perpendicular from this line to  the other edge of the small circle.  The point of intersection of the two lines is always on the small circle.

Further exploration 

There is a lot more you can explore – start by looking into the Tusi Couple – which is what we have just drawn – and the more general case the hypocycloid.

 

Screen Shot 2016-01-08 at 5.55.05 PM

Projective Geometry

Geometry is a discipline which has long been subject to mathematical fashions of the ages. In classical Greece, Euclid’s elements (Euclid pictured above) with their logical axiomatic base established the subject as the pinnacle on the “great mountain of Truth” that all other disciplines could but hope to scale. However the status of the subject fell greatly from such heights and by the late 18th century it was no longer a fashionable branch to study. The revival of interest in geometry was led by a group of French mathematicians at the start of the 1800s with their work on projective geometry. This then paved the way for the later development of non-Euclidean geometry and led to deep philosophical questions as to geometry’s links with reality and indeed just what exactly geometry was.

projective 1Projective geometry is the study of geometrical properties unchanged by projection. It strips away distinctions between conics, angles, distance and parallelism to create a geometry more fundamental than Euclidean geometry. For example the diagram below shows how an ellipse has been projected onto a circle. The ellipse and the circle are therefore projectively equivalent which means that projective results in the circle are also true in ellipses (and other conics).

projective2

Projective geometry can be understood in terms of rays of light emanating from a point. In the diagram above, the triangle IJK drawn on the glass screen would be projected to triangle LNO on the ground. This projection does not preserve either angles or side lengths – so the triangle on the ground will have different sized angles and sides to that on the screen. This may seem a little strange – after all we tend to think in terms of angles and sides in geometry, however in projective geometry distinctions about angles and lengths are stripped away (however something called the cross-ratio is still preserved).

projective3We can see in the image above that a projection from the point E creates similar shapes when the 2 planes containing IJKL and ABCD are parallel. Therefore the Euclidean geometrical study of similar shapes can be thought of as a subset of plane positions in projective geometry.

projective4Taking this idea further we can see that congruent shapes can be achieved if we have the centre of projection, E, “sent to infinity:” In projective geometry, parallel lines do indeed meet – at this point at infinity. Therefore with the point E sent to infinity we have a projection above yielding congruent shapes.

projective5

Projective geometry can be used with conics to associate every point (pole) with a line (polar), and vice versa. For example the point A had the associated red line, d. To find this we draw the 2 tangents from A to the conic. We then join the 2 points of intersection between B and C. This principle of duality allowed new theorems to be discovered simply by interchanging points and lines.

An example of both the symmetrical attractiveness and the mathematical potential for duality was first provided by Brianchon. In 1806 he used duality to discover the dual theorem of Pascal’s Theorem – simply by interchanging points and lines. Rarely can a mathematical discovery have been both so (mechanically) easy and yet so profoundly
beautiful.

Brianchon’s Theorem

Screen Shot 2016-01-08 at 5.42.17 PM

projective 6

 

Pascal’s Theorem

Screen Shot 2016-01-08 at 5.42.36 PM

projective8

 

Poncelet

Poncelet was another French pioneer of projective geometry who used the idea of points and lines being “sent to infinity” to yield some remarkable results when used as a tool for mathematical proof.

Another version of Pascal’s Theorem:

projective9

Poncelet claimed he could prove Pascal’s theorem (shown above) where 6 points on a conic section joined to make a hexagon have a common line. He did this by sending the line GH to infinity. To understand this we can note that the previous point of intersection G of lines AB’ and A’B is now at infinity, which means that AB’ and A’B will now be parallel. This means that H being at infinity also creates the 2 parallel lines AC’. Poncelet now argued that because we could prove through geometrical means that B’C and BC’ were also parallel, that this was consistent with the line HI also being at infinity. Therefore by proving the specific case in a circle where line GHI has been sent to infinity he argued that we could prove using projective geometry the general case of Pascal’s theorem in any conic .

Pascal’s Theorem with intersections at infinity:

projective 10

This branch of mathematics developed quickly in the early 1800s, sparking new interest in geometry and leading to a heated debate about whether geometry should retain its “pure” Euclidean roots of diagrammatic proof, or if it was best understood through algebra. The use of points and lines at infinity marked a shift away from geometry representing “reality” as understood from a Euclidean perspective, and by the late 1800s Beltrami, Poincare and others were able to incorporate the ideas of projective geometry and lines at infinity to provide their Euclidean models of non-Euclidean space. The development of projective geometry demonstrated how a small change of perspective could have profound consequences.

Screen Shot 2016-01-08 at 5.55.05 PM

Projective Geometry

Geometry is a discipline which has long been subject to mathematical fashions of the ages. In classical Greece, Euclid’s elements (Euclid pictured above) with their logical axiomatic base established the subject as the pinnacle on the “great mountain of Truth” that all other disciplines could but hope to scale. However the status of the subject fell greatly from such heights and by the late 18th century it was no longer a fashionable branch to study. The revival of interest in geometry was led by a group of French mathematicians at the start of the 1800s with their work on projective geometry. This then paved the way for the later development of non-Euclidean geometry and led to deep philosophical questions as to geometry’s links with reality and indeed just what exactly geometry was.

projective 1Projective geometry is the study of geometrical properties unchanged by projection. It strips away distinctions between conics, angles, distance and parallelism to create a geometry more fundamental than Euclidean geometry. For example the diagram below shows how an ellipse has been projected onto a circle. The ellipse and the circle are therefore projectively equivalent which means that projective results in the circle are also true in ellipses (and other conics).

projective2

Projective geometry can be understood in terms of rays of light emanating from a point. In the diagram above, the triangle IJK drawn on the glass screen would be projected to triangle LNO on the ground. This projection does not preserve either angles or side lengths – so the triangle on the ground will have different sized angles and sides to that on the screen. This may seem a little strange – after all we tend to think in terms of angles and sides in geometry, however in projective geometry distinctions about angles and lengths are stripped away (however something called the cross-ratio is still preserved).

projective3We can see in the image above that a projection from the point E creates similar shapes when the 2 planes containing IJKL and ABCD are parallel. Therefore the Euclidean geometrical study of similar shapes can be thought of as a subset of plane positions in projective geometry.

projective4Taking this idea further we can see that congruent shapes can be achieved if we have the centre of projection, E, “sent to infinity:” In projective geometry, parallel lines do indeed meet – at this point at infinity. Therefore with the point E sent to infinity we have a projection above yielding congruent shapes.

projective5

Projective geometry can be used with conics to associate every point (pole) with a line (polar), and vice versa. For example the point A had the associated red line, d. To find this we draw the 2 tangents from A to the conic. We then join the 2 points of intersection between B and C. This principle of duality allowed new theorems to be discovered simply by interchanging points and lines.

An example of both the symmetrical attractiveness and the mathematical potential for duality was first provided by Brianchon. In 1806 he used duality to discover the dual theorem of Pascal’s Theorem – simply by interchanging points and lines. Rarely can a mathematical discovery have been both so (mechanically) easy and yet so profoundly
beautiful.

Brianchon’s Theorem

Screen Shot 2016-01-08 at 5.42.17 PM

projective 6

 

Pascal’s Theorem

Screen Shot 2016-01-08 at 5.42.36 PM

projective8

 

Poncelet

Poncelet was another French pioneer of projective geometry who used the idea of points and lines being “sent to infinity” to yield some remarkable results when used as a tool for mathematical proof.

Another version of Pascal’s Theorem:

projective9

Poncelet claimed he could prove Pascal’s theorem (shown above) where 6 points on a conic section joined to make a hexagon have a common line. He did this by sending the line GH to infinity. To understand this we can note that the previous point of intersection G of lines AB’ and A’B is now at infinity, which means that AB’ and A’B will now be parallel. This means that H being at infinity also creates the 2 parallel lines AC’. Poncelet now argued that because we could prove through geometrical means that B’C and BC’ were also parallel, that this was consistent with the line HI also being at infinity. Therefore by proving the specific case in a circle where line GHI has been sent to infinity he argued that we could prove using projective geometry the general case of Pascal’s theorem in any conic .

Pascal’s Theorem with intersections at infinity:

projective 10

This branch of mathematics developed quickly in the early 1800s, sparking new interest in geometry and leading to a heated debate about whether geometry should retain its “pure” Euclidean roots of diagrammatic proof, or if it was best understood through algebra. The use of points and lines at infinity marked a shift away from geometry representing “reality” as understood from a Euclidean perspective, and by the late 1800s Beltrami, Poincare and others were able to incorporate the ideas of projective geometry and lines at infinity to provide their Euclidean models of non-Euclidean space. The development of projective geometry demonstrated how a small change of perspective could have profound consequences.

Website Stats

  • 7,306,724 views

IB Maths Exploration Guide

IB Maths Exploration Guide

A comprehensive 63 page pdf guide to help you get excellent marks on your maths investigation. Includes:

  1. Investigation essentials,
  2. Marking criteria guidance,
  3. 70 hand picked interesting topics
  4. Useful websites for use in the exploration,
  5. A student checklist for top marks
  6. Avoiding common student mistakes
  7. A selection of detailed exploration ideas
  8. Advice on using Geogebra, Desmos and Tracker.

Available to download here.

IB Exploration Modelling and Statistics Guide


IB Exploration Modelling and Statistics Guide

A 60 page pdf guide full of advice to help with modelling and statistics explorations – focusing in on non-calculator methods in order to show good understanding. Includes:

  1. Pearson’s Product: Height and arm span
  2. How to calculate standard deviation by hand
  3. Binomial investigation: ESP powers
  4. Paired t tests and 2 sample t tests: Reaction times
  5. Chi Squared: Efficiency of vaccines
  6. Spearman’s rank: Taste preference of cola
  7. Linear regression and log linearization.
  8. Quadratic regression and cubic regression.
  9. Exponential and trigonometric regression.

Available to download here.

Recent Posts

Follow IB Maths Resources from British International School Phuket on WordPress.com