You are currently browsing the tag archive for the ‘polar’ tag.

Screen Shot 2020-07-24 at 8.47.56 PM

Weaving a Spider Web

I often see some beautiful spider webs near my house, similar to the one pictured above (picture from here).  They clearly have some sort of mathematical structure, so I decided to have a quick go at creating my own.

Looking at the picture above there are 2 main parts, an inner spiral, then a structure of hanging threads from lines which radiate from the centre.

Firstly I will use the general parametric equation of a hypocycloid:

Screen Shot 2020-07-24 at 8.52.28 PM

and take the special case when a = 10 and b = 9:

Screen Shot 2020-07-24 at 8.52.34 PM

This gives the following graph:

Screen Shot 2020-07-24 at 9.00.30 PM

I can then vary the value of n in the following equations:

Screen Shot 2020-07-24 at 8.52.42 PM

Which generates the following:

Screen Shot 2020-07-24 at 9.02.33 PM

Next, I can generate the spiral in the centre by using an Archimedean spiral, plotting the curve in polar form as:

Screen Shot 2020-07-24 at 9.06.12 PM

Which now gives:

Screen Shot 2020-07-24 at 9.06.23 PM

Lastly, I want to have straight lines radiating from the centre going through the vertices of the graphs.  I can notice that at these vertices the gradient will be undefined (as we can’t define the gradient at a sharp point).  Therefore I can differentiate and look for when the gradient will be undefined.

Screen Shot 2020-07-24 at 8.53.02 PM

I can see that this will be undefined when the denominator is zero.  Therefore:

Screen Shot 2020-07-24 at 8.53.49 PM

I can notice that all the vertices are are on the same lines, therefore I can simply choose n =9 to make my life easier, and then solve for t.   I use the fact that sine is an odd function to help here.

Screen Shot 2020-07-24 at 8.54.13 PM

Here p is an integer.  I’ll then rearrange the first of these two equations for t to show how I can then find my equations of the lines.

Screen Shot 2020-07-24 at 8.54.24 PM

If I now substitute this value of t back into my parametric equations I get:

Screen Shot 2020-07-24 at 8.54.44 PM

So, this will tell me the coordinates of the vertices of the “sharp points” of the graph.  Therefore the equation of the straight lines through these points and also through the origin are given by the first equation below. I can then choose my values of p (with p an integer) to get specific solutions.  For example when I choose p = 1 above I get the equation of a line which will pass through one of these vertices:

Screen Shot 2020-07-24 at 8.54.49 PM

Let’s check that this works:

Screen Shot 2020-07-24 at 9.16.44 PM

 

Yes!  So, we can use this method to find the other lines radiating from the centre.  This gives us our final spider web:

Screen Shot 2020-07-24 at 8.49.13 PM

 

So, there we go, a quick go at making a spider web – quite a simplistic pattern, but still utilising parametric equations, polar coordinates and also calculus and trigonometric equations.

 

 

Screen Shot 2020-07-24 at 8.53.58 PM

Website Stats

  • 8,446,828 views

About

All content on this site has been written by Andrew Chambers (MSc. Mathematics, IB Mathematics Examiner).

New website for International teachers

I’ve just launched a brand new maths site for international schools – over 1600 pdf pages of resources to support IB teachers.

Explore here!

Free HL Paper 3 Questions

P3 investigation questions and fully typed mark scheme.  Packs for both Applications students and Analysis students.

Available to download here

IB Maths Exploration Guides

Three comprehensive pdf guides to help you get excellent marks on your maths exploration coursework.  Over 150 pages of advice from an IB examiner.

Available to download here.

Recent Posts

Follow IB Maths Resources from Intermathematics on WordPress.com