You are currently browsing the tag archive for the ‘millenium challenge’ tag. Good at maths?  Really good?  Then maybe one day you’ll be able to claim a \$1million prize for solving some of the fiendishly difficult and important maths problems out there.  In 2000, the Clay Institute offered the reward for any mathematician who was able to crack 7 mathematical problems.  In 13 years only one of them have been solved – the Poincare conjecture.  For the rest, the money is still available.

Summary of the problems (from here)

1 Birch and Swinnerton-Dyer conjecture Euclid geometry for the 21st century, involving things called abelian points and zeta functions and both finite and infinite answers to algebraic equations

2 Poincaré conjecture The surface of an apple is simply connected. But the surface of a doughnut is not. How do you start from the idea of simple connectivity and then characterise space in three dimensions?

See a short news clip explaining why the solver of the Poincare conjecture turned down a million dollar prize.

3 Navier-Stokes equation The answers to wave and breeze turbulence lie somewhere in the solutions to these equations

4 P vs NP problem Some problems are just too big: you can quickly check if an answer is right, but it might take the lifetime of a universe to solve it from scratch. Can you prove which questions are truly hard, which not?

5 Riemann hypothesis Involving zeta functions, and an assertion that all “interesting” solutions to an equation lie on a straight line. It seems to be true for the first 1,500 million solutions, but does that mean it is true for them all?

6 Hodge conjecture At the frontier of algebra and geometry, involving the technical problems of building shapes by “gluing” geometric blocks together

7 Yang-Mills and Mass gap A problem that involves quantum mechanics and elementary particles. Physicists know it, computers have simulated it but nobody has found a theory to explain it.

There is some more discussion about some of the great unsolved maths problems here.  All of these problems would have significant implications to the world if solved – and even problems which initially appear abstract and not related to “real life” have an amazing tendency to be later found to describe some physical feature of the universe.  Is this proof that the universe has an underlying mathematical structure?

### Website Stats

• 8,012,343 views

### IB HL Paper 3 Practice Questions (120 page pdf) IB HL Paper 3 Practice Questions

Seventeen full investigation questions – each one designed to last around 1 hour, and totaling around 40 pages and 600 marks worth of content.  There is also a fully typed up mark scheme.  Together this is around 120 pages of content.

### IB Maths Exploration Guide IB Maths Exploration Guide

A comprehensive 63 page pdf guide to help you get excellent marks on your maths investigation. Includes:

1. Investigation essentials,
2. Marking criteria guidance,
3. 70 hand picked interesting topics
4. Useful websites for use in the exploration,
5. A student checklist for top marks
6. Avoiding common student mistakes
7. A selection of detailed exploration ideas
8. Advice on using Geogebra, Desmos and Tracker.

### Modelling Guide

IB Exploration Modelling Guide

A 50 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Modelling Guide includes:

Linear regression and log linearization, quadratic regression and cubic regression, exponential and trigonometric regression, comprehensive technology guide for using Desmos and Tracker.

### Statistics Guide IB Exploration Statistics Guide

A 55 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Statistics Guide includes: Pearson’s Product investigation, Chi Squared investigation, Binomial distribution investigation, t-test investigation, sampling techniques, normal distribution investigation and how to effectively use Desmos to represent data. 