You are currently browsing the tag archive for the ‘ellipse’ tag.

Screen Shot 2020-04-06 at 3.25.43 PM

Projectile Motion Investigation II

Another example for investigating projectile motion has been provided by fellow IB teacher Ferenc Beleznay.  Here we fix the velocity and then vary the angle, then to plot the maximum points of the parabolas.  He has created a Geogebra app to show this (shown above).  The locus of these maximum points then form an ellipse.

Screen Shot 2020-04-06 at 8.34.58 PM

We can see that the maximum points of the projectiles all go through the dotted elliptical line.  So let’s see if we can derive this equation.

Let’s start with the equations for projectile motion, usually given in parametric form:

Screen Shot 2020-04-06 at 1.17.08 PM

Here v is the initial velocity which we will keep constant, theta is the angle of launch which we will vary, and g is the gravitational constant which we will take as 9.81.

We can plot these curves parametrically, and for each given value of theta (the angle of launch) we will create a projectile motion graph.  If we plot lots of these graphs for different thetas together we get something like this:

Screen Shot 2020-04-06 at 9.36.30 PM

We now want to see if the maximum points are in any sort of pattern.  In order to find the maximum point we want to find when the gradient of dy/dx is 0.  It’s going to be easier to keep things in parametric form, and use partial differentiation.  We have:

Screen Shot 2020-04-06 at 9.12.58 PM

Therefore we find the partial differentiation of both x and y with respect to t.  (This simply means we can pretend theta is a constant).

Screen Shot 2020-04-06 at 9.13.43 PM

We can then say that:

Screen Shot 2020-04-06 at 9.15.26 PM

We then find when this has a gradient of 0:

Screen Shot 2020-04-06 at 9.16.25 PM

We can then substitute this value of t back into the original parametric equations for x:

Screen Shot 2020-04-06 at 9.17.50 PM

and also for y:

Screen Shot 2020-04-06 at 9.18.30 PM

We now have the parametric equations in terms of theta for the locus of points of the maximum points.  For example, with g= 9.81 and v =1 we have the following parametric equations:

Screen Shot 2020-04-06 at 9.21.37 PM

This generates an ellipse (dotted line), which shows the maximum points generated by the parametric equations below (as we vary theta):

Screen Shot 2020-04-06 at 9.26.39 PM

And here is the graph:

Screen Shot 2020-04-06 at 8.34.58 PM

We can vary the velocity to create a new ellipse.  For example the ellipse generated when v =4 creates the following graph:

Screen Shot 2020-04-06 at 9.34.04 PM

So, there we go, we have shown that different ellipses will be created by different velocities.  If you feel like a challenge, see if you can algebraically manipulate the parametric equations for the ellipse into the Cartesian form!

Essential resources for IB students:

1) Revision Village

Screen Shot 2021-05-19 at 9.55.51 AM

Revision Village has been put together to help IB students with topic revision both for during the course and for the end of Year 12 school exams and Year 13 final exams.  I would strongly recommend students use this as a resource during the course (not just for final revision in Y13!) There are specific resources for HL and SL students for both Analysis and Applications.

Screen Shot 2018-03-19 at 4.42.05 PM.png

There is a comprehensive Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and then provides a large bank of graded questions.  What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial.  Really useful!

Screen Shot 2021-05-19 at 10.05.18 AM

The Practice Exams section takes you to a large number of ready made quizzes, exams and predicted papers.   These all have worked solutions and allow you to focus on specific topics or start general revision.  This also has some excellent challenging questions for those students aiming for 6s and 7s.

Each course also has a dedicated video tutorial section which provides 5-15 minute tutorial videos on every single syllabus part – handily sorted into topic categories.

2) Exploration Guides and Paper 3 Resources

Screen Shot 2021-05-19 at 6.32.13 PM

I’ve put together four comprehensive pdf guides to help students prepare for their exploration coursework and Paper 3 investigations. The exploration guides talk through the marking criteria, common student mistakes, excellent ideas for explorations, technology advice, modeling methods and a variety of statistical techniques with detailed explanations. I’ve also made 17 full investigation questions which are also excellent starting points for explorations.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

Website Stats

  • 8,256,956 views

About

All content on this site has been written by Andrew Chambers (MSc. Mathematics, IB Mathematics Examiner).

New website for International teachers

I’ve just launched a brand new maths site for international schools – over 1000 pdf pages of resources to support IB and IGCSE maths lessons.

Explore here!

1-1 coursework tuition

My colleague Dr Taylan Celtik and his team offer well renowned and professional 1-1 coursework tuition.

Find out more here

IB Maths Exploration Guide

A comprehensive 63 page pdf guide to help you get excellent marks on your maths exploration coursework.

Available to download here.

Getting a 7 in IB Maths Exploration Coursework

I have just made a Udemy online tutorial course for the exploration.  This includes nine tutorial videos of essential information designed to ensure you get the best possible grade.

Use the code NEWTON for a 40% discount.

IB HL Paper 3 Practice Questions (120 page pdf)

Eight P3 investigation questions and fully typed mark scheme (around 240 marks)

Available to download here

Modelling Guide for Explorations

A 50 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Available to download here.

Statistics Guide

A 55 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Available to download here.

IB Revision Notes

Full revision notes for SL Analysis (60 pages), HL Analysis (112 pages) and SL Applications (53 pages).  Beautifully written by an experienced IB Mathematics teacher.

Available to download here.

Recent Posts

Follow IB Maths Resources from Intermathematics on WordPress.com