You are currently browsing the tag archive for the ‘comlex numbers’ tag.

polynomial roots

Graphically Understanding Complex Roots

If you have studied complex numbers then you’ll be familiar with the idea that many polynomials have complex roots. For example x2 + 1 = 0 has the solution x = i and -i.  We know that the solution to x2 – 1 = 0 ( x = 1 and -1) gives the two x values at which the graph crosses the x axis, but what does a solution of x = i or -i represent graphically?

There’s a great post on Maths Fun Facts which looks at basic idea behind this and I’ll expand on this in a little more detail.  This particular graphical method only works with quadratics:

Step 1


You have a quadratic graph with complex roots, say y = (x – 1)2 + 4. Written in this form we can see the minimum point of the graph is at (1,4) so it doesn’t cross the x axis.

Step 2


Reflect this graph downwards at the point of its vertex. We do this by transforming y = (x – 1)2 + 4 into y =  -(x – 1)2 + 4

Step 3


We find the roots of this new equation using the quadratic formula or by rearranging – leaving the plus or minus sign in.
-(x – 1)2 + 4 = 0
(x-1) = ± 2
x = 1 ± 2

Plot a circle with centre (1,0) and radius of 2.  This will touch both roots.

Step 4

Graphically Understanding complex roots

We can now represent the complex roots of the initial equation by rotating the 2 real roots we’ve just found 90 degrees anti-clockwise, with the centre of rotation the centre of the circle.

The points B and C on the diagram are a representation of the complex roots (if we view the graph as representing the complex plane).  The complex roots of the initial equation are therefore given by x = 1 ± 2i.

General case

It’s relatively straightforward to show algebraically what is happening:

If we take the 2 general equations:

1) y = (x-a)2 + b
2) y = -(x-a)2 + b  (this is the reflection at the vertex of equation 1 )

(b > 0 ).  Then the first equation will always have complex roots.  The roots of both equations will be given by:

1) a ±i√b

2) a ±√b

So we can think of (2) as representing a circle of radius √b, centred at (a,0).  Therefore multiplying √b by i has the effect of rotating the point (√b, 0 ) 90 degrees anti-clockwise around the point (a,0).  Therefore the complex roots will be graphically represented by those points at the top and bottom of this circle.  (a, √b) and (a, -√b)

Graphically finding complex roots of a cubic

There is also a way of graphically calculating the complex roots of a cubic with 1 real and 2 complex roots.  This method is outlined with an algebraic explanation here

Step 1


We plot a cubic with 1 real and 2 complex roots, in this case y = x3 – 9x2 + 25x – 17.

Step 2

Graphically Understanding complex roots

We find the line which goes through the real root (1,0) and which is also a tangent to the function.

Step 3

Graphically Understanding complex roots

If the x co-ordinate of the tangent intersection with the cubic is a and the gradient of the tangent is m, then the complex roots are a ± (√m)i.  In this case the tangent x intersection is at 4 and the gradient of the tangent is 1, therefore the complex roots are 4 ± 1i.

[2nd last sentence edited – thanks for the comments below!]

IB Revision

Screen Shot 2018-03-19 at 4.35.19 PM

If you’re already thinking about your coursework then it’s probably also time to start planning some revision, either for the end of Year 12 school exams or Year 13 final exams. There’s a really great website that I would strongly recommend students use – you choose your subject (HL/SL/Studies if your exam is in 2020 or Applications/Analysis if your exam is in 2021), and then have the following resources:

Screen Shot 2018-03-19 at 4.42.05 PM.pngThe Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and each area then has a number of graded questions. What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial.  Really useful!

Screen Shot 2019-07-27 at 10.02.40 AM

The Practice Exams section takes you to ready made exams on each topic – again with worked solutions.  This also has some harder exams for those students aiming for 6s and 7s and the Past IB Exams section takes you to full video worked solutions to every question on every past paper – and you can also get a prediction exam for the upcoming year.

I would really recommend everyone making use of this – there is a mixture of a lot of free content as well as premium content so have a look and see what you think.

Website Stats


IB HL Paper 3 Practice Questions (120 page pdf)

IB HL Paper 3 Practice Questions 

Seventeen full investigation questions – each one designed to last around 1 hour, and totaling around 40 pages and 600 marks worth of content.  There is also a fully typed up mark scheme.  Together this is around 120 pages of content.

Available to download here.

IB Maths Exploration Guide

IB Maths Exploration Guide

A comprehensive 63 page pdf guide to help you get excellent marks on your maths investigation. Includes:

  1. Investigation essentials,
  2. Marking criteria guidance,
  3. 70 hand picked interesting topics
  4. Useful websites for use in the exploration,
  5. A student checklist for top marks
  6. Avoiding common student mistakes
  7. A selection of detailed exploration ideas
  8. Advice on using Geogebra, Desmos and Tracker.

Available to download here.

Modelling Guide

IB Exploration Modelling Guide 

A 50 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Modelling Guide includes:

Linear regression and log linearization, quadratic regression and cubic regression, exponential and trigonometric regression, comprehensive technology guide for using Desmos and Tracker.

Available to download here.

Statistics Guide

IB Exploration Statistics Guide

A 55 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Statistics Guide includes: Pearson’s Product investigation, Chi Squared investigation, Binomial distribution investigation, t-test investigation, sampling techniques, normal distribution investigation and how to effectively use Desmos to represent data.

Available to download here.

IB Revision Notes

IB Revision Notes

Full revision notes for SL Analysis (60 pages), HL Analysis (112 pages) and SL Applications (53 pages).  Beautifully written by an experienced IB Mathematics teacher, and of an exceptionally high quality.  Fully updated for the new syllabus.  A must for all Analysis and Applications students!

Available to download here.

Recent Posts

Follow IB Maths Resources from British International School Phuket on