You are currently browsing the tag archive for the ‘calculus’ tag.

Screen Shot 2020-07-24 at 8.47.56 PM

Weaving a Spider Web

I often see some beautiful spider webs near my house, similar to the one pictured above (picture from here).  They clearly have some sort of mathematical structure, so I decided to have a quick go at creating my own.

Looking at the picture above there are 2 main parts, an inner spiral, then a structure of hanging threads from lines which radiate from the centre.

Firstly I will use the general parametric equation of a hypocycloid:

Screen Shot 2020-07-24 at 8.52.28 PM

and take the special case when a = 10 and b = 9:

Screen Shot 2020-07-24 at 8.52.34 PM

This gives the following graph:

Screen Shot 2020-07-24 at 9.00.30 PM

I can then vary the value of n in the following equations:

Screen Shot 2020-07-24 at 8.52.42 PM

Which generates the following:

Screen Shot 2020-07-24 at 9.02.33 PM

Next, I can generate the spiral in the centre by using an Archimedean spiral, plotting the curve in polar form as:

Screen Shot 2020-07-24 at 9.06.12 PM

Which now gives:

Screen Shot 2020-07-24 at 9.06.23 PM

Lastly, I want to have straight lines radiating from the centre going through the vertices of the graphs.  I can notice that at these vertices the gradient will be undefined (as we can’t define the gradient at a sharp point).  Therefore I can differentiate and look for when the gradient will be undefined.

Screen Shot 2020-07-24 at 8.53.02 PM

I can see that this will be undefined when the denominator is zero.  Therefore:

Screen Shot 2020-07-24 at 8.53.49 PM

I can notice that all the vertices are are on the same lines, therefore I can simply choose n =9 to make my life easier, and then solve for t.   I use the fact that sine is an odd function to help here.

Screen Shot 2020-07-24 at 8.54.13 PM

Here p is an integer.  I’ll then rearrange the first of these two equations for t to show how I can then find my equations of the lines.

Screen Shot 2020-07-24 at 8.54.24 PM

If I now substitute this value of t back into my parametric equations I get:

Screen Shot 2020-07-24 at 8.54.44 PM

So, this will tell me the coordinates of the vertices of the “sharp points” of the graph.  Therefore the equation of the straight lines through these points and also through the origin are given by the first equation below. I can then choose my values of p (with p an integer) to get specific solutions.  For example when I choose p = 1 above I get the equation of a line which will pass through one of these vertices:

Screen Shot 2020-07-24 at 8.54.49 PM

Let’s check that this works:

Screen Shot 2020-07-24 at 9.16.44 PM

 

Yes!  So, we can use this method to find the other lines radiating from the centre.  This gives us our final spider web:

Screen Shot 2020-07-24 at 8.49.13 PM

 

So, there we go, a quick go at making a spider web – quite a simplistic pattern, but still utilising parametric equations, polar coordinates and also calculus and trigonometric equations.

 

 

Screen Shot 2020-07-24 at 8.53.58 PM

Screen Shot 2016-04-20 at 8.13.41 PM

This is a nice example of using some maths to solve a puzzle from the mindyourdecisions youtube channel (screencaptures from the video).

How to Avoid The Troll: A Puzzle

Screen Shot 2016-04-20 at 8.18.09 PM

In these situations it’s best to look at the extreme case first so you get some idea of the problem.  If you are feeling particularly pessimistic you could assume that the troll is always going to be there.  Therefore you would head to the top of the barrier each time.  This situation is represented below:

The Pessimistic Solution:

Screen Shot 2016-04-20 at 7.33.54 PM

Another basic strategy would be the optimistic strategy.  Basically head in a straight line hoping that the troll is not there.  If it’s not, then the journey is only 2km.  If it is then you have to make a lengthy detour.  This situation is shown below:

The Optimistic Solution:

Screen Shot 2016-04-20 at 7.34.15 PM

The expected value was worked out here by doing 0.5 x (2) + 0.5 x (2 + root 2) = 2.71.

The question is now, is there a better strategy than either of these?  An obvious possibility is heading for the point halfway along where the barrier might be.  This would make a triangle of base 1 and height 1/2.  This has a hypotenuse of root (5/4).  In the best case scenario we would then have a total distance of 2 x root (5/4).  In the worst case scenario we would have a total distance of root(5/4) + 1/2 + root 2.  We find the expected value by multiply both by 0.5 and adding.  This gives 2.63 (2 dp).  But can we do any better?  Yes – by using some algebra and then optimising to find a minimum.

The Optimisation Solution:

Screen Shot 2016-04-20 at 7.35.29 PM

To minimise this function, we need to differentiate and find when the gradient is equal to zero, or draw a graph and look for the minimum.  Now, hopefully you can remember how to differentiate polynomials, so here I’ve used Wolfram Alpha to solve it for us.  Wolfram Alpha is incredibly powerful -and also very easy to use.  Here is what I entered:

Screen Shot 2016-04-20 at 7.53.58 PM

and here is the output:

Screen Shot 2016-04-20 at 7.54.12 PM

So, when we head for a point exactly 1/(2 root 2) up the potential barrier, we minimise the distance travelled to around 2.62 miles.

So, there we go, we have saved 0.21 miles from our most pessimistic model, and 0.01 miles from our best guess model of heading for the midpoint.  Not a huge difference – but nevertheless we’ll save ourselves a few seconds!

This is a good example of how an exploration could progress – once you get to the end you could then look at changing the question slightly, perhaps the troll is only 1/3 of the distance across?  Maybe the troll appears only 1/3 of the time?  Could you even generalise the results for when the troll is y distance away or appears z percent of the time?

Essential resources for IB students:

1) Revision Village

Screen Shot 2021-05-19 at 9.55.51 AM

Revision Village has been put together to help IB students with topic revision both for during the course and for the end of Year 12 school exams and Year 13 final exams.  I would strongly recommend students use this as a resource during the course (not just for final revision in Y13!) There are specific resources for HL and SL students for both Analysis and Applications.

Screen Shot 2018-03-19 at 4.42.05 PM.png

There is a comprehensive Questionbank takes you to a breakdown of each main subject area (e.g. Algebra, Calculus etc) and then provides a large bank of graded questions.  What I like about this is that you are given a difficulty rating, as well as a mark scheme and also a worked video tutorial.  Really useful!

Screen Shot 2021-05-19 at 10.05.18 AM

The Practice Exams section takes you to a large number of ready made quizzes, exams and predicted papers.   These all have worked solutions and allow you to focus on specific topics or start general revision.  This also has some excellent challenging questions for those students aiming for 6s and 7s.

Each course also has a dedicated video tutorial section which provides 5-15 minute tutorial videos on every single syllabus part – handily sorted into topic categories.

2) Exploration Guides and Paper 3 Resources

Screen Shot 2021-05-19 at 6.32.13 PM

I’ve put together four comprehensive pdf guides to help students prepare for their exploration coursework and Paper 3 investigations. The exploration guides talk through the marking criteria, common student mistakes, excellent ideas for explorations, technology advice, modeling methods and a variety of statistical techniques with detailed explanations. I’ve also made 17 full investigation questions which are also excellent starting points for explorations.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

Website Stats

  • 8,256,956 views

About

All content on this site has been written by Andrew Chambers (MSc. Mathematics, IB Mathematics Examiner).

New website for International teachers

I’ve just launched a brand new maths site for international schools – over 1000 pdf pages of resources to support IB and IGCSE maths lessons.

Explore here!

1-1 coursework tuition

My colleague Dr Taylan Celtik and his team offer well renowned and professional 1-1 coursework tuition.

Find out more here

IB Maths Exploration Guide

A comprehensive 63 page pdf guide to help you get excellent marks on your maths exploration coursework.

Available to download here.

Getting a 7 in IB Maths Exploration Coursework

I have just made a Udemy online tutorial course for the exploration.  This includes nine tutorial videos of essential information designed to ensure you get the best possible grade.

Use the code NEWTON for a 40% discount.

IB HL Paper 3 Practice Questions (120 page pdf)

Eight P3 investigation questions and fully typed mark scheme (around 240 marks)

Available to download here

Modelling Guide for Explorations

A 50 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Available to download here.

Statistics Guide

A 55 page pdf guide full of advice to help with modelling explorations – focusing in on non-calculator methods in order to show good understanding.

Available to download here.

IB Revision Notes

Full revision notes for SL Analysis (60 pages), HL Analysis (112 pages) and SL Applications (53 pages).  Beautifully written by an experienced IB Mathematics teacher.

Available to download here.

Recent Posts

Follow IB Maths Resources from Intermathematics on WordPress.com