You are currently browsing the tag archive for the ‘calculus’ tag.

Screen Shot 2020-07-24 at 8.47.56 PM

Weaving a Spider Web

I often see some beautiful spider webs near my house, similar to the one pictured above (picture from here).  They clearly have some sort of mathematical structure, so I decided to have a quick go at creating my own.

Looking at the picture above there are 2 main parts, an inner spiral, then a structure of hanging threads from lines which radiate from the centre.

Firstly I will use the general parametric equation of a hypocycloid:

Screen Shot 2020-07-24 at 8.52.28 PM

and take the special case when a = 10 and b = 9:

Screen Shot 2020-07-24 at 8.52.34 PM

This gives the following graph:

Screen Shot 2020-07-24 at 9.00.30 PM

I can then vary the value of n in the following equations:

Screen Shot 2020-07-24 at 8.52.42 PM

Which generates the following:

Screen Shot 2020-07-24 at 9.02.33 PM

Next, I can generate the spiral in the centre by using an Archimedean spiral, plotting the curve in polar form as:

Screen Shot 2020-07-24 at 9.06.12 PM

Which now gives:

Screen Shot 2020-07-24 at 9.06.23 PM

Lastly, I want to have straight lines radiating from the centre going through the vertices of the graphs.  I can notice that at these vertices the gradient will be undefined (as we can’t define the gradient at a sharp point).  Therefore I can differentiate and look for when the gradient will be undefined.

Screen Shot 2020-07-24 at 8.53.02 PM

I can see that this will be undefined when the denominator is zero.  Therefore:

Screen Shot 2020-07-24 at 8.53.49 PM

I can notice that all the vertices are are on the same lines, therefore I can simply choose n =9 to make my life easier, and then solve for t.   I use the fact that sine is an odd function to help here.

Screen Shot 2020-07-24 at 8.54.13 PM

Here p is an integer.  I’ll then rearrange the first of these two equations for t to show how I can then find my equations of the lines.

Screen Shot 2020-07-24 at 8.54.24 PM

If I now substitute this value of t back into my parametric equations I get:

Screen Shot 2020-07-24 at 8.54.44 PM

So, this will tell me the coordinates of the vertices of the “sharp points” of the graph.  Therefore the equation of the straight lines through these points and also through the origin are given by the first equation below. I can then choose my values of p (with p an integer) to get specific solutions.  For example when I choose p = 1 above I get the equation of a line which will pass through one of these vertices:

Screen Shot 2020-07-24 at 8.54.49 PM

Let’s check that this works:

Screen Shot 2020-07-24 at 9.16.44 PM


Yes!  So, we can use this method to find the other lines radiating from the centre.  This gives us our final spider web:

Screen Shot 2020-07-24 at 8.49.13 PM


So, there we go, a quick go at making a spider web – quite a simplistic pattern, but still utilising parametric equations, polar coordinates and also calculus and trigonometric equations.



Screen Shot 2020-07-24 at 8.53.58 PM

Screen Shot 2016-04-20 at 8.13.41 PM

If you are a teacher then please also visit my new site: for over 2000+ pdf pages of resources for teaching IB maths!

This is a nice example of using some maths to solve a puzzle from the mindyourdecisions youtube channel (screencaptures from the video).

How to Avoid The Troll: A Puzzle

Screen Shot 2016-04-20 at 8.18.09 PM

In these situations it’s best to look at the extreme case first so you get some idea of the problem.  If you are feeling particularly pessimistic you could assume that the troll is always going to be there.  Therefore you would head to the top of the barrier each time.  This situation is represented below:

The Pessimistic Solution:

Screen Shot 2016-04-20 at 7.33.54 PM

Another basic strategy would be the optimistic strategy.  Basically head in a straight line hoping that the troll is not there.  If it’s not, then the journey is only 2km.  If it is then you have to make a lengthy detour.  This situation is shown below:

The Optimistic Solution:

Screen Shot 2016-04-20 at 7.34.15 PM

The expected value was worked out here by doing 0.5 x (2) + 0.5 x (2 + root 2) = 2.71.

The question is now, is there a better strategy than either of these?  An obvious possibility is heading for the point halfway along where the barrier might be.  This would make a triangle of base 1 and height 1/2.  This has a hypotenuse of root (5/4).  In the best case scenario we would then have a total distance of 2 x root (5/4).  In the worst case scenario we would have a total distance of root(5/4) + 1/2 + root 2.  We find the expected value by multiply both by 0.5 and adding.  This gives 2.63 (2 dp).  But can we do any better?  Yes – by using some algebra and then optimising to find a minimum.

The Optimisation Solution:

Screen Shot 2016-04-20 at 7.35.29 PM

To minimise this function, we need to differentiate and find when the gradient is equal to zero, or draw a graph and look for the minimum.  Now, hopefully you can remember how to differentiate polynomials, so here I’ve used Wolfram Alpha to solve it for us.  Wolfram Alpha is incredibly powerful -and also very easy to use.  Here is what I entered:

Screen Shot 2016-04-20 at 7.53.58 PM

and here is the output:

Screen Shot 2016-04-20 at 7.54.12 PM

So, when we head for a point exactly 1/(2 root 2) up the potential barrier, we minimise the distance travelled to around 2.62 miles.

So, there we go, we have saved 0.21 miles from our most pessimistic model, and 0.01 miles from our best guess model of heading for the midpoint.  Not a huge difference – but nevertheless we’ll save ourselves a few seconds!

This is a good example of how an exploration could progress – once you get to the end you could then look at changing the question slightly, perhaps the troll is only 1/3 of the distance across?  Maybe the troll appears only 1/3 of the time?  Could you even generalise the results for when the troll is y distance away or appears z percent of the time?

Essential Resources for IB Teachers


Screen Shot 2021-08-21 at 1.07.49 PM

If you are a teacher then please also visit my new site.  This has been designed specifically for teachers of mathematics at international schools.  The content now includes over 2000 pages of pdf content for the entire SL and HL Analysis syllabus and also the SL Applications syllabus.  Some of the content includes:

  1. Original pdf worksheets (with full worked solutions) designed to cover all the syllabus topics.  These make great homework sheets or in class worksheets – and are each designed to last between 40 minutes and 1 hour.
  2. Original Paper 3 investigations (with full worked solutions) to develop investigative techniques and support both the exploration and the Paper 3 examination.
  3. Over 150 pages of Coursework Guides to introduce students to the essentials behind getting an excellent mark on their exploration coursework.
  4. A large number of enrichment activities such as treasure hunts, quizzes, investigations, Desmos explorations, Python coding and more – to engage IB learners in the course.

There is also a lot more.  I think this could save teachers 200+ hours of preparation time in delivering an IB maths course – so it should be well worth exploring!

Essential Resources for both IB teachers and IB students

1) Exploration Guides and Paper 3 Resources

Screen Shot 2021-12-01 at 1.19.14 PM

I’ve put together a 168 page Super Exploration Guide to talk students and teachers through all aspects of producing an excellent coursework submission.  Students always make the same mistakes when doing their coursework – get the inside track from an IB moderator!  I have also made Paper 3 packs for HL Analysis and also Applications students to help prepare for their Paper 3 exams.  The Exploration Guides can be downloaded here and the Paper 3 Questions can be downloaded here.

Website Stats



All content on this site has been written by Andrew Chambers (MSc. Mathematics, IB Mathematics Examiner).

New website for International teachers

I’ve just launched a brand new maths site for international schools – over 2000 pdf pages of resources to support IB teachers.  If you are an IB teacher this could save you 200+ hours of preparation time.

Explore here!

Free HL Paper 3 Questions

P3 investigation questions and fully typed mark scheme.  Packs for both Applications students and Analysis students.

Available to download here

IB Maths Super Exploration Guide

A Super Exploration Guide with 168 pages of essential advice from a current IB examiner to ensure you get great marks on your coursework.

Available to download here.

Recent Posts

Follow IB Maths Resources from Intermathematics on