You are currently browsing the tag archive for the ‘Anscombe’s Quartet’ tag.

Anscombe’s Quartet was devised by the statistician Francis Anscombe to illustrate how important it was to not just rely on statistical measures when analyzing data. To do this he created 4 data sets which would produce nearly identical statistical measures. The scatter graphs above generated by the Python code here.

**Statistical measures**

1) Mean of x values in each data set = 9.00

2) Standard deviation of x values in each data set = 3.32

3) Mean of y values in each data set = 7.50

4) Standard deviation of x values in each data set = 2.03

5) Pearson’s Correlation coefficient for each paired data set = 0.82

6) Linear regression line for each paired data set: y = 0.500x + 3.00

When looking at this data we would be forgiven for concluding that these data sets must be very similar – but really they are quite different.

**Data Set A:**

x = [10,8,13,9,11,14,6,4,12,7,5]

y = [8.04, 6.95,7.58,8.81,8.33, 9.96,7.24,4.26,10.84,4.82,5.68]

Data Set A does indeed fit a linear regression – and so this would be appropriate to use the line of best fit for predictive purposes.

**Data Set B:**

x = [10,8,13,9,11,14,6,4,12,7,5]

y = [9.14,8.14,8.74,8.77,9.26,8.1,6.13,3.1,9.13,7.26,4.74]

You could fit a linear regression to Data Set B – but this is clearly not the most appropriate regression line for this data. Some quadratic or higher power polynomial would be better for predicting data here.

**Data Set C:**

x = [10,8,13,9,11,14,6,4,12,7,5]

y = [7.46,6.77,12.74,7.11,7.81,8.84,6.08,5.39,8.15,6.42,5.73]

In Data set C we can see the effect of a single outlier – we have 11 points in pretty much a perfect linear correlation, and then a single outlier. For predictive purposes we would be best investigating this outlier (checking that it does conform to the mathematical definition of an outlier), and then potentially doing our regression with this removed.

**Data Set D:**

x = [8,8,8,8,8,8,8,19,8,8,8]

y = [6.58,5.76,7.71,8.84,8.47,7.04,5.25,12.50,5.56,7.91,6.89]

In Data set D we can also see the effect of a single outlier – we have 11 points in a vertical line, and then a single outlier. Clearly here again drawing a line of best fit for this data is not appropriate – unless we remove this outlier first.

**The moral of the story**

So – the moral here is always use graphical analysis alongside statistical measures. A very common mistake for IB students is to rely on Pearson’s Product coefficient without really looking at the scatter graph to decide whether a linear fit is appropriate. If you do this then you could end up with a very low mark in the E category as you will not show good understanding of what you are doing. So always plot a graph first!